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A B S T R A C T

Objectives: To provide an overview of artificial intelligence (AI) applications in orthodontic diagnosis and
treatment planning, and to evaluate whether AI improves accuracy, reliability, and time efficiency compared to
expert-based manual approaches, while highlighting its current limitations.
Data: This review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for
Scoping Reviews (PRISMA-ScR) Checklist.
Sources: An electronic search was performed on PubMed, Web of Science, and Embase electronic databases.
Additional studies were identified from Google Scholar and by hand searching through included studies. The
search was carried out until June 2023 without restriction of language and publication year.
Study selection: After applying the selection criteria, 71 articles were included in the review. The main research
areas were classified into three domains based on the purpose of AI: diagnostics (n = 29), landmark identification
(n = 20) and treatment planning (n = 22).
Conclusion: This scoping review shows that AI can be used in various orthodontic diagnosis and treatment
planning applications, with anatomical landmark detection being the most studied domain. While AI shows
potential in improving time efficiency and reducing operator variability, the accuracy and reliability have not yet
consistently surpassed those of expert clinicians. At all moments, human supervision remains essential. Further
advances and optimizations are necessary to strive towards automated patient-specific treatment planning.
Clinical significance: AI in orthodontics has shown its ability to serve as a decision-support system, thereby
enhancing the efficiency of diagnostics and treatment planning within orthodontics digital workflow.”

1. Introduction

In recent years, technological advancements have paved the way for
digitalization in orthodontics, which has largely improved and simpli-
fied diagnostic and treatment planning workflows. The main highlights
towards achieving a computer-based digital workflow in orthodontics
have been the incorporation of three-dimensional (3D) imaging devices,
computer-aided design and manufacturing platforms (CAD/CAM) and
3D printing. Such technologies offer faster, more precise and predictable
treatment with less patient discomfort. Although such an approach has

multiple advantages over traditional manual workflows, its imple-
mentation in clinical practice is still limited, possibly due to two main
reasons: a lack of technical knowledge and the high costs associated with
the equipment [1].
Specifically, some areas with room for improvement are time effi-

ciency and observer variability. For instance, orthodontists still have to
rely on their knowledge to identify cephalometric landmarks, which is
time consuming, prone to human error and carries a high risk of
observer variability. Another example is the decision-making process
during treatment planning, which varies depending on the clinician’s
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experience [2,3].
To overcome such limitations, incorporating artificial intelligence

(AI)-based networks aims to automate some of these processes with high
reliability and accuracy. This automation mainly depends on AI-driven
machine learning (ML) or deep learning (DL) algorithms. While ML
majorly relies on structured datasets for training and consists of simple
and more linear algorithms, DL is a subset of ML that employs neural
networks resembling human brain neurons for analysing complex and
unstructured datasets. DL networks can efficiently deal with high
dimensional data having multiple predictor variables. Amongst several
DL-based artificial neural networks (ANNs), convolutional neural net-
works (CNNs), which have one or more layers of convolution units, have
demonstrated the most optimal performance in the field of image
analysis and are commonly being applied in the majority of dento-
maxillofacial workflows for diagnostics, treatment planning and prog-
nosis prediction [4].
Orthodontic procedures encompass a range of intricate tasks,

including the identification of cephalometric landmarks and the making
of treatment planning decisions, both of which necessitate precision and
efficiency. Furthermore, the diagnosis of malocclusion and the inter-
pretation of imaging data are vital for effective treatment planning. AI
technologies have the potential to aid in meeting these orthodontic
needs by automating tasks, enhancing accuracy, and minimizing vari-
ability. A number of studies have already utilized AI automation for
manual orthodontic diagnostic tasks such as landmark detection,
cephalometric analysis, and malocclusion diagnosis using both two-
dimensional (2D) and three-dimensional (3D) imaging [5,6]. Other
research has applied AI to orthodontic treatment planning and in aiding
clinical decision-making processes, such as determining whether a tooth
extraction is necessary or if orthognathic surgery should be considered
[7,8]. However, there is still a need for a comprehensive review and
mapping of the existing literature on the application of AI for various
orthodontic tasks, taking into account their performance, reliability, and
time efficiency.
Although several scoping reviews have previously explored this topic

[9–14], the field of AI research in orthodontics has experienced rapid
growth. In the last three years, there has been an exponential increase in
studies focusing on AI applications in orthodontics, driven by ad-
vancements in ML and DL [14]. This surge in publications has revealed a
range of new applications, methodologies, and insights that were either
insufficiently addressed or overlooked in earlier reviews [15–18].
Consequently, this scoping review aims to bridge these gaps by consol-
idating more evidence and examining advancements in AI applications
for orthodontic diagnosis and treatment planning, and evaluating
whether AI improves accuracy, reliability, and time efficiency compared
to expert-based manual methods, while also highlighting current
limitations.

2. Materials and methods

2.1. Protocol and registration

This scoping review was conducted in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses extension
for Scoping Reviews (PRISMA-ScR) Checklist [19]. The study protocol
was registered on the Open Science Framework platform and is available
at the following link: https://osf.io/wd5nm.

2.2. Review question

The research was designed according to Population, Intervention,
Comparison, and Outcome (PICO) framework as follows:
Patients (P): orthodontic patients
Intervention (I): AI-based algorithms for orthodontic diagnosis and

treatment planning,
Comparison (C): conventional manual diagnosis and treatment

planning by experts,
Outcome (O): accuracy, reliability and time-efficiency
Review question: Does the application of AI (I) offer improved ac-

curacy, reliability, and time-efficiency (O) for diagnosis and treatment
planning in orthodontic patients (P) compared to an expert-based
manual approach (C)?

2.3. Eligibility criteria

The review was limited to articles published in the last ten years and
in English. For an article to be included in the scoping review, the
following criteria needed to be met: (1) focusing on orthodontic diag-
nosis and treatment planning; (2) assessing quantitative data (accuracy,
validity or time-efficiency); (3) application of AI algorithms (ML, DL).
Studies with ambiguous information, narrative or systematic reviews,
case reports, letters, editorials, commentaries, and non-English articles
were excluded.

2.4. Information sources and search strategy

An electronic search was undertaken on the electronic databases of
PubMed, Web of Science and Embase. The search strategy consisted of
two concepts (orthodontics and artificial intelligence) combined with
the ‘AND’ operator. Each concept consisted of keywords and MeSH
terms as shown in Supplementary Table 1.
A grey literature search was performed on Google Scholar and by

hand searching through included studies to identify any additional
studies that were not obtained from the selected electronic databases.
The retrieved articles were imported to EndNote 20 (Thomson Reuters,
Philadelphia, PA, USA) for the elimination of duplicates and further
selection.

2.5. Selection of sources of evidence

Following the primary search, duplicates were removed using
EndNote X8 software (Clarivate Analytics, Philadelphia, PA). Two re-
viewers (NW and MV) examined the titles and abstracts of all remaining
articles to determine which studies were relevant for further evaluation
through a full-text review. Afterward, the articles selected for a full-text
review were evaluated by both reviewers based on the inclusion criteria
to determine their eligibility. Study selection was conducted indepen-
dently by both reviewers, and any disagreement was reconciled through
discussion with a third reviewer (RJ).

2.6. Data charting and data items

Two reviewers (NW and RSG) independently extracted data from
eligible studies and resolved discrepancies through discussion. The data
charting was performed on a standardized data abstraction form pre-
pared in advance using a Microsoft Excel spreadsheet. The extracted
information included general information (title, author and journal
name, publication year), study characteristics (area of application,
sample size, intervention type, outcome) and type of AI algorithm used
(ML/DL).

3. Results

3.1. Search results

The search yielded 943 articles from the three databases, from which
576 remained after removing the duplicates. Based on the title and ab-
stract screening, 122 articles were selected for further assessment.
Finally, 71 articles met the eligibility criteria and were included in the
review following full-text screening. Fig. 1 shows the PRISMA-ScR
flowchart of the study screening process. Tables 1–3 summarize the
characteristics of the included studies based on their focus: diagnostic,
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landmark detection and treatment planning tasks, with Supplementary
Table 2 consisting of legend accompanying the tables.
Most studies were published between 2021 and 2023 (n = 58, 82 %),

as illustrated in Fig. 2. The applications of AI in diagnostics included
image indexing (n= 2), maturation determination (n= 14), diagnosis of
occlusal traits (n = 10), and upper airway assessment (n = 3). Twenty
studies (28 %) applied AI network for automated landmark detection,
making this the most prevalent topic among the included studies
(Fig. 2). In relation to treatment planning, 22 studies were identified,
focusing on prediction of the need for tooth extraction (n = 4), general
orthodontic planning (n = 13), and orthognathic surgery planning (n =

5).

3.2. Diagnostics

3.2.1. Image indexing and archiving
Two studies designed an AI-based algorithm to classify shuffled

clinical and radiological images according to their respective categories:
facial photos (front, smile), intraoral photos (front, upper, lower,
buccal), lateral cephalograms and panoramic radiographs. Li et al.
applied CNN to index clinical (intra- and extraoral) and radiological
images (lateral cephalogram, panoramic radiograph) with an accuracy

Fig. 1. Flowchart of article selection.
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of 99 % in 0.08 min [15]. In another study, Ryu et al. designed a CNN
model for classifying intra- and extraoral images with an overall success
rate of 98 % [20].

3.2.2. Maturation determination
In one study, automated CNN-based age estimation was performed

on panoramic radiographs by using Demirjian method. The network
achieved a result in 0.3 s with an accuracy between 92 % and 96 %,
which was 3 % higher than manual classification [21]. On the other
hand, the remaining ten studies applied AI for cervical vertebrae
maturation (CVM) staging on lateral cephalometric images [22–31].
Two studies found that ANN was the most stable and effective algorithm

for automated CVM detection compared to other algorithms, such as
random forest and decision tree [23,26]. In eleven studies, CNNs were
used to automate CVM staging [24,25,27–34], where the study of Seo
et al. [30] showed the highest accuracy of 90%with an output below 0.1
s of staging time. Meanwhile, the lowest accuracy (61.62 %) was re-
ported by Mohammad-Rahimi et al. [34], whose algorithm was used to
classify six stages of CVM. Atici et al. [24] proposed a custom-designed
CNN with tuneable directional filters, which provided an accuracy 75 %
higher than the commonly used pre-trained network models without
directional filters.

Table 1
Overview on included studies in diagnostics domain.
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3.2.3. Diagnosis of occlusal traits
All studies applied CNNs for dentoskeletal classification on either

panoramic radiography [35,36], intraoral clinical images [6], profile
photos [37,38] or lateral cephalometry [38–41]. Aljabri et al. [35]
investigated automated classification of canine impaction and reported
93 % accuracy with balanced data of 268 images, equally split between
the two impaction types. Vranckx et al. [36] developed automatic third
molar segmentation and angulation measurements with 90 % and 80 %
accuracy, respectively. Talaat et al. [6] showed an accuracy of 99 % for
detecting and localizing malocclusion on intraoral images, such as
crowding, spacing, overjet, crossbite, open bite and deep bite. Zhang
et al. [41] trained CNN models to classify the mandibular growth of
children with anterior crossbite using lateral cephalometry and achieved
an accuracy of 85 %.
Two studies automated the diagnosis of sagittal and vertical skeletal

malocclusions on lateral cephalometry [39,40], reporting an accuracy of
80 % and >90 %, respectively. Aksoy et al. automatically predicted
skeletal class III malocclusion on profile photos with 76 % accuracy
[37]. Nan et al. used both types of images, resulting in an accuracy of
90.33 % using lateral cephalometry and 83.39 % using profile photos
[38].
Ali et al. [42] applied ANN to predict the mesiodistal dimensions of

teeth on intra-oral photographs automatically and found a high corre-
lation (r = 0,91) between the target and actual output. Budiman et al.
[43] used an ANN-based software for predicting the dental arch form
(oval, square or tapered) on two-dimensionally scanned dental casts and
achieved an accuracy of 76.3 %.

3.2.4. Upper airway assessment
Three studies applied CNN-based models for the automated

evaluation of the upper airway. Jeong et al. [17] implemented a
deep-CNN to assess upper airway obstruction on lateral cephalogram
and achieved an F1 score of 0.88. On the other hand, two studies
employed CNNmodels with CBCT images. Shujaat et al. [44] introduced
a method that segmented the pharyngeal airway space independently
with a Dice Similarity Coefficient (DSC) of 97 %. Meanwhile, Dong et al.
[45] used Hierarchical Masks U-Net (HMSAU-Net) for automated
detection of adenoid hypertrophy on segmented CBCT images of the
upper airway, obtaining an F1 score of 0.90.

3.2.5. Landmark detection
Twenty articles evaluated the use of AI for anatomical landmark

detection, all of which applied a DL algorithm based on conventional
neural networks (CNNs). Most articles trained and validated the AI
network to automatically detect 19 anatomical landmarks on lateral
cephalometric images using IEEE (Institute of Electrical and Electronics
Engineers) ISBI (International Symposium on Biomedical Imaging) 2015
Challenge public datasets [5,46–52]. Other studies, on the other hand,
used their own dataset of lateral cephalometric images with various
patient conditions, including craniofacial deformities, images with or-
thodontic fixed appliances and post-orthognathic surgery patients
[53–56]. Amongst the landmark detection studies, Yao et al. [52]
reached the highest successful detection rate (SDR) within a 2 mm de-
viation range (97.30 %) and 37 landmarks were automatically detected
in 3 s. The lowest SDR (67.68 %) was observed by Arik et al. [5] when
using the IEEE ISBI 2015 Challenge dataset 2.
Furthermore, five studies automated landmark identification on 3D

images [57–62]. Out of these, only three studies performed 3D landmark
localization generated from CT [57] and CBCT [60,61], with Dot et al.
achieving the highest SDR (90.4 %) and lowest mean error (1.0 mm)

Table 2
Overview on included studies in landmark detection domain.
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[57].
Kim et al. [59] extracted conventional lateral and maximum in-

tensity projection (MIP) lateral cephalograms from the CBCT images,
achieving high reliability with both images. However, MIP yielded
better soft tissue profiles with an SDR of 87.13 % within the 2 mm error
range. In another study, Kim et al. [58] showed an SDR of 60.88 %
within 2 mm range on posterior-anterior cephalograms generated from
CBCT images. In contrast, Gil et al. [62] achieved an SDR of 83.3 % on
directly acquired posterior-anterior cephalograms. Supplementary Fig.
1 illustrates the SDR values of the studies that applied automated
AI-based landmark detection within the clinically acceptable range of 2
mm [46].
Only two studies performed landmark detection on non-radiological

images i.e., dental casts [63] and facial photographs [64]. Croquet et al.
[63] automated landmarking on the palatal region of the dental cast
with an accuracy ranging between 68 and 93 % within a 2 mm error
range. In addition, Rao et al. [64] automated the detection of photo-
metric points on 2D facial photographs and found that 97.71 % of the

landmarks fell between a 5 mm error range with a detection time of
0.00023 ms.

3.3. Treatment planning

3.3.1. Predicting the need for tooth extraction
Two studies applied neural networks to determine the need to extract

teeth for orthodontic purposes, using measurements on lateral cepha-
lometry and other model variables as input. Although the type and
number of input variables were not equal, both networks showed almost
similar accuracy of 93 % [7] and 94 % [65]. Furthermore, both studies
also showed a similar accuracy (84 %) for determining four extraction
patterns, which were upper and lower first premolar extractions, upper
and lower second premolar extractions, upper first premolar and lower
second premolar extractions, and upper first premolar extractions only
[7,65]. Del Real et al. [66] achieved an accuracy of 93.9 % when
automatically identifying the need for tooth extraction, while Leavitt
et al. [67] used ML to detect tooth extraction patterns with an accuracy

Table 3
Overview on included studies in treatment planning domain.
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of 81.63 % for upper and lower first premolar extraction.

3.3.2. General orthodontic planning
One study constructed an ML algorithm to automate multiple

decision-making tasks during orthodontic treatment planning, such as
diagnosis of skeletal malocclusion, extraction vs. non-extraction and
treatment modalities, reporting an accuracy of 84 % compared to
planning by expert orthodontist [68].
Shimizu et al. [69] specifically used facial photographs to illustrate

their importance in treatment planning. They designed an AI-based
support vector machine that could automatically prioritize orthodon-
tic problems based on a list and create a plan to address them. However,
both prioritization and planning tasks showed low precision (65 % and
48 %) and recall (55 % and 48 %) to be used as an equivalent to an
expert orthodontist. Cai et al. [70] employed facial photographs and
lateral cephalograms as training data for CNN models. The authors
automatically differentiated diverse sagittal skeletal classes based on
facial traits with an accuracy of 93 %.
El-Dawlatly et al. [71] constructed a DL-based decision support

system for automated treatment planning of patients with deep bite. The
authors achieved precise decision-making with a very good agreement
(94.4 %) between the plans proposed by the algorithm and the actual
treatment plan.
Two studies formulated prediction models based on ANNs pertaining

to treatment outcomes. Cai et al. [72] developed an ANN-based model to
predict facial aesthetic enhancements resulting from occlusal plane
rotation. This model achieved a regression score accuracy of 0.92 using
cephalogram data. Meanwhile, Xu et al. [16] designed a prediction
model for patient experience and perception of Invisalign treatment.
This model achieved predictive success rates of 88%, 93%, and 92% for
pain, anxiety, and quality of life, respectively. These predictive models
could assist clinicians in decision-making processes regarding treatment
strategies to mitigate treatment compliance issues. One study employed
ML to create a downloadable toolkit for predicting the prominence of the
upper and lower lips. This was achieved by inputting 14 hard tissue
cephalometric measurements and demographic data [73]. The AI model
demonstrated superior performance, with root mean square error values
of 1.25 and 1.49 for the upper lip and lower lip prominence,

respectively.
Four studies developed CNN-based tooth detection and segmentation

from 2D and 3D images. Leite et al. [74] reported an intersection over
union (IoU) over 92 % for automatic tooth segmentation from pano-
ramic images. The procedure was able to reduce working time by 67 %
in comparison to manual segmentation. Three other studies used CBCT
scan with Alqahtani et al. [75] showing the highest IoU of 99 %, fol-
lowed by the study of Lahoud et al. [76] and Shaheen et al. [77], with
respective IoU of 87 % and 82 %. Alqahtani et al. developed automatic
tooth segmentation from CBCT scans of patients with orthodontic
brackets [75].
Moreover, two studies focussed on the automated segmentation and

integration of CBCT-scanned tooth root and intraoral-scanned tooth
crown. This was performed to aid in the monitoring of tooth and root
position during orthodontic treatment. Both studies achieved low mean
errors, where Lee et al. [78] reported errors of 0.07 mm for the maxilla
and 0.08 mm for the mandible. Meanwhile, Hu et al. [79] reported even
mean errors of 0.05 mm and 0.06 mm for maxilla and mandible,
respectively.

3.3.3. Orthognathic surgical planning
Two studies employed DL algorithm to assist with the planning of

orthognathic surgery. Chaiprasittikul et al. [8] applied CNN and ANN to
develop a decision-making system for determining the need for
orthognathic surgery with a diagnostic agreement of 96.3 %. Cheng
et al. [80] used CNN to predict reposition vectors as guidance for sur-
gical planning with a mean error of 1.34 mm.
Four studies used CNN as the AI framework to explore automatic

segmentation of anatomical structures from 3D scans relevant to
orthognathic surgery planning. Verhelst et al. [81] developed an auto-
matic mandibular segmentation with a DSC of 98 %. Another study by
Preda et al. [18] achieved a DSC of 93 % for automatic maxillofacial
complex segmentation from CBCT scans with metal artifacts from dental
implants, restorations, and orthodontic brackets. Furthermore,
Nogueira‑Reis et al. [82] created a CNN-based maxillary virtual patient
that integrates automatic segmentation of the maxillary complex, sinus
and teeth with DSC of 99 % (Fig. 3).

Fig. 2. Publication years of the included articles with the distribution of articles based on the purpose of AI network.
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4. Discussion

The following review provides a comprehensive and up-to-date
coverage of AI applications in orthodontic diagnosis and treatment
planning by evaluating the performance of AI-based systems in com-
parison to manual methods, without delving into comparisons between
different AI algorithms or models. Prior reviews often concentrated on
specific tasks or restricted their findings to particular AI algorithms [83,
84], thus providing a fragmented perspective of the field. While some
reviews have delivered valuable insights into the broader context of AI
applications in orthodontics [10,11], the present review adopts a more
targeted approach by conducting an in-depth examination of all essen-
tial domains. This approach highlights the unique challenges, opportu-
nities, and direct relevance of AI technology in enhancing the efficiency
and accuracy of orthodontic workflows. Moreover, a diverse range of
orthodontic applications were included that have previously been un-
explored or underexplored, such as image indexing, upper airway
assessment, maxillary complex segmentation, and patient experience
and perception [15–18]. By incorporating these various facets, this re-
view offers a more cohesive perspective on the potential impact of AI in
the field of orthodontics.
In the present study, the number of studies was not only updated, yet

also the respective content was further structured with more advanced
tabulation of the involved AI tools. Indeed, more than 80 % of the papers
included in the present scoping review were published between 2021
and 2023, which shows an exponential increase in research involving AI
in orthodontics. Additionally, the present scoping review identifies
previously unexplored applications of AI in orthodontics not mentioned
in the aforementioned reviews, such as image indexing, diagnosis of
occlusal traits, and automated virtual patient creation, illustrating the
advancement of AI integration in orthodontics.
The findings of this review show that AI can aid in various areas,

particularly when tasks are time-consuming or require advanced
expertise. Fig. 3 illustrates the use of AI in orthodontics, where images
and clinical parameters are typically used as input. The state-of-the-art
ML approaches in the form of DL CNNs are increasingly becoming the
backbone of orthodontic task automation. In recent years, there has
been a surge in articles on the use of DL algorithms in orthodontics, with
many studies highlighting the efficiency and accuracy of these tech-
niques. AI has primarily relied on 2D radiographic images [26] and there
is limited evidence supporting its use with clinical images [6] and facial
photographs [38]. However, there has been an increase in the use of 3D
radiographic images [44].
A key element in the field of orthodontics involves translating

intricate orthodontic requirements into clearly defined AI tasks, which

requires careful attention to detail and methodological clarity. For
example, tasks like cephalometric analysis involve the transformation of
the task into a computational one, which includes the annotation or
labeling of landmarks on lateral cephalograms. Similarly, predicting
treatment outcomes necessitates the segmentation of teeth. In addition,
when deciding on the optimal treatment plan, clinical parameters are
used as training data. The training phase is crucial in enhancing the
performance of AI algorithms and heavily depends on the expertise of
the professionals involved. Therefore, those responsible for creating
training datasets should have significant experience in this field [68].
In the creation of an AI system, the testing phase is equally important

as it allows for the evaluation of its performance using various metrics,
offering vital insights into its effectiveness and precision. A variety of
performance metrics have been employed to evaluate the performance
of AI models in specific orthodontic tasks across the studies included in
this review. While accuracy was the most commonly used metric, other
metrics such as the F1 score, mean errors, dice coefficient, and root
mean square were also used in some articles. A comprehensive expla-
nation about performance metrics can be found in Supplementary Table
3.
The first part of orthodontic diagnosis is the indexing and classifi-

cation of shuffled radiological and clinical images into their categories,
which is time-consuming and has to be manually performed by an
orthodontist. Therefore, AI models have been proposed to provide
automated and efficient image indexing, aiming to enhance efficiency
and reduce clinician workload. Although there is limited evidence
related to automated classification, several studies have reported
promising results, demonstrating that AI can achieve high accuracy and
significantly improve time efficiency compared to manual methods.
When considering a fully automated orthodontic diagnostic system,
future studies should consider further reduction of the workload of or-
thodontists. Following image indexing, dental model analysis on con-
ventional plaster or digital casts is another important task in the
diagnostic process. It is generally performed manually and carries a high
risk of observer variability. So far, limited studies are available imple-
menting AI for automating model analysis, where studies have only
automated the process of assessing mesiodistal dimensions of teeth and
predicting arch form [42,43]. Hence, future studies should focus on
developing AI models for automating study cast analysis.
Another important diagnostic task in orthodontics is CVM determi-

nation, which is vital for determining the skeletal maturation stage of a
patient during growth. Identifying the most optimal time to initiate
treatment and assessing the completion of active growth are crucial
aspects of orthodontic treatment planning [24]. The findings of this
review demonstrate that AI can determine CVM in just 0.1 s, presenting

Fig. 3. Input and output of AI applications in orthodontics. AI: Artificial Intelligence; ML: Machine Learning; NN: Neural Networks; DL: Deep Learning.
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a remarkable contrast to the time-intensive manual evaluation con-
ducted by clinicians [30]. However, while AI’s performance is nearly
comparable to that of expert manual assessments, its reliability remains
insufficient for full trust without ongoing human validation [22]. Liao
et al. made their datasets publicly available to ensure the consistency of
images for comparing AI models in future studies [28].
Regarding the diagnosis of occlusal traits, AI algorithms were pro-

posed for a one-step diagnosis approach on lateral cephalometric images
with optimal accuracy, eliminating the need for landmark detection and
its associated errors [39,40]. However, these types of algorithms have
not yet been widely explored. Furthermore, applying such approaches
using 3D images still needs to be investigated.
AI has also been applied to upper airway assessment, a critical

component in orthodontic treatment due to its influence on craniofacial
growth and development [44]. Certain conditions, such as adenoid hy-
pertrophy, can result in airway obstruction, altering the breathing
pattern and potentially leading to malocclusion [17]. AI methodologies
provide a more rapid assessment of these structures compared to
traditional manual techniques, although issues with model generaliz-
ability persist [45]. Many studies are constrained by the limited datasets
they employ, which restricts their wider applicability. When these
models are applied to public datasets, their performance often decline,
highlighting the necessity for ongoing research to ensure the reliability
of AI-based tools in orthodontic practice.
Although AI models demonstrate promising potential in automating

some aspects of orthodontic diagnosis, current applications are still
unable to make independent diagnoses. Their reliability is not yet suf-
ficient to warrant complete trust, underscoring the need for continuous
improvement and validation. Despite significant advancements in time
efficiency compared to manual methods, AI’s diagnostic capabilities
serve as a supplement to expert clinical judgment. Future research
should focus on improving the accuracy of AI algorithms, while recog-
nizing the crucial role of clinician input and validation.
In the articles reviewed, the most researched AI application was

automatic landmark detection, which is a crucial step for orthodontic
diagnosis. The accuracy of AI algorithms varied in different studies due
to the use of diverse datasets and landmarks. Consistency is a key
requirement when comparing different AI methods. Some studies have
overcome this challenge by using publicly available datasets to ensure
consistency [5].
Interestingly, when compared to manual methods by expert clini-

cian, AI has the ability to show better reproducibility, which overcomes
the limitation of observer variability. However, its accuracy has not yet
consistently surpassed that of human experts, indicating that while AI is
less prone to variability, further improvements are needed to ensure that
landmarks are placed as precisely as those identified by expert clinicians
[40].
Most studies used landmark detection on lateral cephalometric im-

ages. However, it is important to acknowledge that a 2D projection
could lead to an inaccurate representation of 3D anatomical structures
due to certain limitations, such as distortion, superimposition and
magnification. The increasing use of 3D imaging in managing ortho-
dontic cases has created a greater need to explore 3D landmark detection
[57]. Manual landmark localization on 3D images is time-consuming
and demands a skilled operator, as it involves manual segmentation of
anatomical structures and precise landmark positioning. Notably, only
three studies investigated automated landmarking directly on CBCT and
CT-derived 3D image. Although AI cannot replace clinicians in making
diagnoses, its application in this field could markedly decrease the
duration required for landmark identification, thereby conserving sub-
stantial time for clinicians. Such an automation is expected to optimise
the workflow of orthodontists and significantly improve their produc-
tivity, ultimately leading to better patient care and treatment results.
AI was successfully implemented to predict the need for dental

extraction and orthognathic surgery planning. However, the inclusion
criteria of these studies were limited to non-complex malocclusions and

patients with full dentitions [7,8,65]. However, further research is still
needed to implement AI for treatment planning of complex and/or
partially edentulous cases. The use of expert opinion as the gold stan-
dard is concerning due to the variety of treatment approaches. This di-
versity can lead to varying plans for the same patient, raising questions
regarding the reliability of expert opinion as a reference point in
AI-driven systems. Determining whether the opinion represents a
consensus among orthodontists or individual practitioner viewpoints is
essential. Thus, future research should evaluate the definition of the gold
standard and its implications for clinical applicability. Nevertheless, the
existing findings showed that AI could act as a useful adjunct by
improving the clinical decision-making process of orthodontists during
training or at the beginning of a clinical career to compensate for lack of
experience. At the same instance, it is crucial to emphasize that AI is
currently incapable of independently generating treatment plans.
Human oversight remains essential to guide AI’s recommendations and
ensure that the proposed treatment plans align with clinical judgment
and patient-specific needs.
Several studies have attempted to develop automatic segmentation

of anatomical structures relevant to general orthodontics treatment
planning [74–77] and orthognathic surgery planning [18,81,82], such
as teeth and maxillofacial complex. The ability of AI to perform these
tasks can significantly enhance time efficiency by automating tradi-
tionally labor-intensive processes, such as manual segmentation. The
results of these studies are important for creating treatment planning
simulations and depicting treatment outcomes. Furthermore, it is also an
important step in digital workflow in orthodontics [82]. However, these
studies showed limitations of sample heterogeneity. It is necessary to
incorporate data from different imaging machines with different pa-
rameters to improve the generalizability of the AI model [82].
Beyond tooth segmentation, the application of AI in monitoring

tooth movement is crucial for evaluating the results and efficacy of or-
thodontic treatment. Studies have focused on automating both the teeth
segmentation and registration processes of intra-oral scans and CBCT
image [78,79], which could allow clinicians to compare and predict
tooth crown and root position during orthodontic treatment. These ad-
vancements represent a paradigm shift towards orthodontic care, her-
alding enhanced patient outcomes and more efficient clinical
workflows.
While AI cannot independently generate treatment plans and re-

quires continuous human intervention to ensure accuracy and reliability
in clinical practice, it shows significant promise in enhancing time ef-
ficiency and automating tasks such as segmentation and treatment
planning simulations. Consequently, AI can serve as a valuable adjunct
for less experienced orthodontists, helping them develop more informed
treatment plans.
There are certain limitations associated with this review. Firstly, data

search was confined to articles written in English, which excluded
studies published in other languages. Secondly, several studies might
have been excluded based on eligibility criteria. Finally, a scoping re-
view was conducted to evaluate the overall state of research in diagnosis
and treatment planning in orthodontics and identify areas where further
research is needed instead of performing a systematic review that fo-
cuses on assessing the reliability and quality of existing knowledge in a
specific research area. When considering the robustness of such a re-
view, Arksey and O’Malley argued that a scoping review enables to
present an overview of existing literature where quality becomes irrel-
evant [85].
The incorporation of AI in orthodontics presents both opportunities

and challenges. A significant hurdle is the scarcity of data, as the an-
notated datasets required for training AI models in orthodontics are
often limited in size and diversity. Furthermore, the variability in clin-
ical practices and patient populations necessitates robust model gener-
alization to ensure applicability across diverse settings. It is essential to
ensure the interpretability of AI models to foster trust and acceptance
among clinicians, as the complexity of “black-box” algorithms may

R.S. Gracea et al. Journal of Dentistry 152 (2025) 105442 

9 



impede their adoption in clinical practice. Overcoming these challenges
necessitates interdisciplinary collaboration among orthodontists, data
scientists, and computer engineers to develop AI solutions that are both
clinically relevant and technically robust. By addressing these technical
aspects, we can gain valuable insights into the practical applications and
future directions of AI-driven orthodontic care.
In the realm of AI model development, particularly in specialized

fields such as orthodontics, the role of data annotation is indeed pivotal.
The process of data labeling, which involves assigning meaningful and
informative labels to raw data, is often subjective and requires a deep
understanding of the domain. This is where the expertise of dental
professionals becomes invaluable. Their nuanced understanding enables
them to generate accurate and reliable data labels, which are critical for
training robust AI models. By involving dental experts in the data la-
beling process, we can ensure that the AI models developed are not only
technically sound but also contextually relevant and reliable. This un-
derscores the indispensable role of domain expertise in the development
of AI models, reinforcing the idea that technology and human expertise
must go hand in hand for optimal outcomes.
While AI has made considerable strides in various facets of ortho-

dontic practice, there remain several areas that are under-researched yet
hold substantial promise for the discipline. One such area is the pre-
diction of eruption patterns for impacted teeth, a critical factor for
effective treatment planning. AI can also offer valuable insights into
long-term treatment outcomes through facial growth simulation.
Another potential application of AI lies in orthodontic indices, which
assess treatment needs based on occlusal characteristics. This could
streamline treatment planning and optimize resource distribution. The
integration of AI into these processes could lead to more precise eval-
uations, potentially influencing policy decisions and healthcare
economics.
AI is not designed to supplant the clinical judgement and expertise of

clinicians. Rather, it aids in tasks such as image analysis, data inter-
pretation for diagnosis, and the selection of optimal treatment plans. The
human element remains indispensable for interpreting unique patient-
specific factors and complexities. The integration of human expertise
and AI-driven insights is crucial for efficient and precise patient-specific
treatment planning. In this context, AI should be viewed as a decision-
support system, not as a replacement for the orthodontist until clini-
cally applicable models are established in future studies.
Moreover, as the use of AI systems to assist healthcare professionals

in diagnosis and treatment planning increases, concerns regarding legal
liability emerge. The incorporation of AI in medical decision-making
introduces complex legal quandaries concerning responsibility and lia-
bility. These extend beyond individual practitioners and encompass
broader aspects such as institutional liability, regulatory oversight, and
the evolution of medical malpractice law [86]. To successfully navigate
these legal complexities, it is vital to establish clear guidelines and
mechanisms that prioritize patient safety, foster innovation, and ensure
accountability.

5. Conclusion

Orthodontists are constantly seeking tools that improve the accu-
racy, reliability, and time efficiency of diagnostic and treatment plan-
ning workflows. AI has been shown to be a powerful tool for reducing
operator variability, human error, and time consumption compared to
expert manual methods. Despite these advances, the accuracy and reli-
ability of AI have not yet consistently surpassed those of expert clini-
cians. Consequently, human supervision remains indispensable to
ensure that AI-generated recommendations align with clinical judgment
and patient-specific needs. The reliance on expert opinion as the gold
standard for AI training introduces variability, further challenging the
consistency and reliability of AI-driven models. Future research must
focus on improving AI’s generalizability and accuracy, particularly for
more diverse patient populations and complex clinical scenarios. AI

should be regarded as a decision-support tool that enhances, rather than
replaces, the critical role of clinical judgment in orthodontic care.
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