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A B S T R A C T   

Nanoparticles have shown significant potential in dental implants as they have distinctive properties and po-
tential benefits. They have distinct physicochemical features that differ from their bulk equivalents. These 
characteristics make nanoparticles highly appealing for application in commercial and medical research. The 
main objective of nanotechnology research and development is to advance overarching social goals, including 
enhancing human potential and pushing the limits of environmentally sound growth. Considering this, graphene 
nanoparticles are rapidly overtaking other nanostructures as the favoured option for contemporary biomedical 
applications. This paper reviews the significance of nanoparticles in various fields and critically examines the 
importance of graphene nanoparticles in dental implant applications. It also discusses techniques for graphene 
synthesization and characterization. Additionally, it featured multiple applications of graphene in dental im-
plants along with the present difficulties and potential outcomes. Numerous potential applications in dentistry 
research exist for this highly adaptable nanotechnology. Due to its distinctive characteristics and possible ad-
vantages, graphene nanoparticles have demonstrated promise in dental implants.   

1. Introduction 

The spectrum of nanoscale atoms used in nanotechnology, which 
ranges from 1 to 100 nm, makes it an essential 21st-century technology 
[1–4]. It has made many research projects in various fields, such as 
chemistry, physics, medicine, and other areas, possible [5]. Nano-
particles have proven distinct catalytic, thermal, optical, electrical, and 
biological properties used in various industries due to their high surface 
energy, large surface area-to-volume ratio, and comparatively tiny size 
compared to bulk material [6]. Although nanoparticles of the same 
substance have a higher surface-to-volume ratio (per unit mass), they 
are more reactive. The laws of quantum physics apply to particles 
smaller than 50 nm [7,8]. 

Regarding scientific knowledge and practical uses, nanoparticles are 
currently in the most advanced stage [9]. Nanoparticles’ size-dependent 
physical and chemical properties led to their investigation 10 years ago 
[10]. They are now in the commercial exploring phase [11,12]. 

Nanotechnology is leading the rapid development of healthcare goods 
because of its numerous potential advantages and risks to human health 
[13]. In particular, compared to its competitors, graphene nanotech-
nology has exhibited long-term clinical success from the start of the 
study period. Some essential characteristics include the significant me-
chanical strength, high surface area, and superior electrical conductivity 
of graphene nanoparticles [14]. The primary distinctions between micro 
and graphene oxide nanoparticles are their size, surface area, dispersion 
behavior, and potential applications [15]. Nanoparticles are more useful 
candidates for cutting-edge applications in a variety of fields because 
they generally have advantages in terms of reactivity [16], dispersion 
[17], and biological interactions [18]. 

Graphene nanoparticles in dental implants improve biocompatibility 
by promoting osseointegration through improved cell adhesion [19] and 
proliferation [20], ensuring the implant’s stability and longevity. 
Additionally, they lower inflammation and promote tissue regeneration, 
which promotes healing and enhances functional and aesthetically 
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pleasing results [21]. By limiting bacterial growth, reducing the chance 
of complications, and averting peri‑implantitis, the inherent antibacte-
rial properties of graphene nanoparticles improve biocompatibility in 
dental implants [22].Additionally, Graphene-doped poly(methyl--
methacrylate) materials have been identified as beneficial to enhancing 
dental implants’ biocompatibility and mechanical characteristics [23]. 

Using graphene nanoparticles in dental implants has several signif-
icant advantages, one of which is that they can enhance the osseointe-
gration of the implant with the surrounding bone tissue [24]. This is so 
that the implant can be firmly secured in place. Graphene nanoparticles 
can induce the creation of new bone tissue [25]. Dental implants made 
of graphene nanoparticles are a unique and intriguing area of study that 
could significantly increase the success rates of these treatments and 
lower the risk of problems like infection and implant failure. Despite 
several disadvantages and potentially hazardous circumstances, 
research on this phenomenon is highly dependable. 

Graphene nanoparticles possess remarkable biological properties 
that render them highly suitable for augmenting dental implant mate-
rials. These materials’ distinctive two-dimensional configuration and 
biocompatible nature facilitate effective integration with adjacent bone 
tissue, expediting the healing process and mitigating the likelihood of 
implant rejection [26]. In addition, the exceptional electrical conduc-
tivity of graphene has the potential to further the progress of smart 
implants, enabling the real-time monitoring of oral health and the status 
of implants [27]. As scientists continue to explore the utilization of 
graphene nanoparticles for biomedical purposes, the prospective ad-
vancements in dental implant technology hold great promise. These 
advancements can provide patients with tooth replacement options that 
are more resilient, effective, and compatible with biological systems 
[28]. 

The process of osseointegration in dental implants, which in-
corporates graphene nanoparticles, is a complex phenomenon that oc-
curs in several distinct phases. At the outset, following the introduction 
of graphene nanoparticles into the body, their notable characteristics, 
such as a substantial surface area and compatibility with biological 
systems, contribute to the prompt formation of blood clots and the 
attraction of inflammatory cells to the location of the implant. This 
denotes the primary inflammatory phase, wherein the human body 
initiates the process of healing [29]. In the subsequent phase, known as 
the proliferative phase, the utilization of graphene nanoparticles facili-
tates the adhesion and proliferation of osteoblasts, thereby stimulating 
the development of fresh bone tissue near the implant [30]. Ultimately, 
in the final phase, the utilization of graphene’s conductivity can 

contribute to preserving a consistent bone-implant interface, thereby 
enhancing the long-term effectiveness of the implant [31]. 

This paper focuses on the critical discussion of graphene for dental 
implant applications. It reviewed the importance of NPs in different 
fields. In addition, characterization methods and graphene fabrication 
strategies were covered in this study. The uses of graphene in various 
dental implant applications have also been addressed. Furthermore, the 
discussion has focused on current challenges and prospects. 

2. Synthesis approaches of graphene nanoparticles 

Graphene Oxide is regarded as a highly promising nanomaterial due 
to its exceptional physical and chemical properties. In a recent study, 
Inchingolo et al. [32] inferred that graphene coatings can significantly 
enhance osteogenic differentiation in bone marrow mesenchymal stem 
cells when cultured in vitro. This effect is likely achieved by regulating 
the FAK/P38 signaling pathway. Furthermore, these coatings can pro-
mote the integration of dental implants within living organisms. 
Nevertheless, additional research is required to substantiate these po-
tential applications, particularly in the context of human subjects. The 
study observed that incorporating surface roughness through graphene 
oxide (GO) coatings on implant surfaces exhibited stability and 
non-reactivity and promoted favourable cellular processes such as 
adhesion, diffusion, and proliferation. Utilizing GO in implant veneers 
shows promise in addressing multiple significant concerns. Two major 
factors contributing to implant failure are the presence of germs on the 
tissues surrounding the implant and the antibacterial properties of 
graphene oxide. Moreover, several studies have demonstrated that 
Graphene Oxide (GO) can facilitate the process of osseointegration. 
Additionally, graphene oxide (GO) can effectively bind biomolecules 
and active ingredients, potentially enhancing osseointegration and 
expediting healing. According to Inchingolo et al., its recovery at gra-
phene oxide (GO) coatings shows considerable potential in maintaining 
a favourable equilibrium between a coated dental implant’s ability to 
inhibit biofilms formation and stimulate a beneficial cellular reaction 
[32]. 

Typically, the covalent functionalization of graphene involves 
sharing sp2 orbitals and their conversion to sp3 hybridized orbitals. This 
process significantly impacts the graphene material’s local symmetry 
and electronic structure [33]. In addition to utilizing covalent func-
tionalization, the non-covalent approach has garnered attention in 
bio-application. Specifically, the formation of polymer/graphene 
nanocomposites is often the focus of interest in this context. As 

Fig. 1. An illustration of the Graphene production types.  
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previously discussed, the potential mechanisms underlying the interac-
tion between graphene and polymeric compounds include Van der 
Waals forces, π-π interaction, electrostatic interactions, and chemical 
binding. The interaction between graphene and polymers is primarily 
governed by the combination of Van der Waals forces and other in-
teractions, which arise due to the unique structure of graphene. 
Furthermore, polymers containing π-bonds, such as polyvinyl alcohol 
(PVA) and polymethyl methacrylate (PMMA) [34], are capable of 
engaging in π-π interactions with graphene [35]. The stability of gra-
phene is enhanced by non-covalent interactions, which also contribute 
to improving its thermal, electrical, and mechanical properties [36–38]. 
Graphene nanosheets have the potential to enhance the bioactivity, 
mechanical, and thermal properties of bioceramics and metallic struc-
tures, similar to the way polymers do [39]. 

Nanoparticles in medicine require producing particles with different 
shapes, monodispersity, chemical compositions, and sizes [40]. 
Top-down and bottom-up methodologies can categorize the many 
methods utilized to generate the nanoparticles [41].Graphene pro-
ductionusesvarious synthesis methods, such as chemical vapor deposi-
tion, liquid phase exfoliation, liquid phase growth, mechanical 
exfoliation, epitaxial growth, and electrochemical exfoliation. Graphene 
made in various ways can have various advantages and disadvantages 
depending on how it is used [42].Fig. 1 shows some Synthesis process of 
Graphene Nanoparticles. 

2.1. Top-down techniques 

In a top-down technique, graphite or graphite derivatives like 
graphite oxide (GO) and graphite fluorides are separated from one 
another or exfoliated to create graphene or modified graphene sheets. A 
researcher’s contribution might be inferred from Table 1. Using top- 
down approach, precision like graphite is broken down into only one 
atom thick layers. Graphite is transformed into graphene using 

mechanical exfoliation, chemical exfoliation, and chemical synthesis 
[42]. 

2.2. Bottom-up techniques 

Atoms and molecules are used in bottom-up approaches to building 
larger-featured objects through additive processes [47]. By heating hy-
drocarbon gasses like methane to roughly 1000 ◦C, bottom-up 
manufacturing includes growing sheet graphene on a metal substrate 
like copper or nickel foil. The catalytic function of the metal substrate 
facilitates the separation of hydrogen and carbon. When this carbon is 
depleted on the metal substrate, it forms the graphene sheet by 
self-assembling [48]. The bottom-up approach allows the graphene 
layer thickness to be managed by applying various surface catalysts and 
growth criteria [49]. Atomic control over the geometry of the materials, 
including edge state, defects, size, and other elements, is possible when 
fabricating graphene nanoribbons (GNRs) from the bottom up [50]. 

2.3. Others 

Other processes for making graphene include thermal fusion of PAHs 
[51], graphite arc discharge [52], PMMA nanofibres exposed to an 
electron beam [53], and nano-diamond conversion [54]. Arc discharge 
in an H2 atmosphere can produce graphene in two to three layers with 
flake sizes between 100 and 200 nm [55]. Mechanical exfoliation and 
CVD are two techniques that can result in high-quality graphene [56]. 

3. Characterization approaches of graphene nanoparticles 

An essential component of research and examination into graphene 
is its characterization. Graphene’s shape, characteristics, flaws, and 
layers are investigated through characterizations using spectroscopic 
and microscopic observations [57]. Characterization methods include 
atomic force microscopy (AFM), scanning electron microscopy (SEM), 
transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray 
photoelectron spectroscopy (XPS), Mossbauer spectroscopy, Raman 
spectroscopy, and UV–visible spectroscopy [58]. 

3.1. Raman spectroscopy 

Raman spectroscopy is commonly employed to investigate graphe-
ne’s structure and electrical properties [59]. Raman spectroscopy is 
performed on graphene, and a few review articles on the optical phonon 
spectrum and the Raman graphene spectrum have been released [60]. 
Graphene’s molecule vibration reacts with monochromatic Raman 
spectroscopic radiation to cause a scattering change in the radiation 
[61]. In graphene, three primary peaks can be seen: the D, G, and 2D 
elevations. The D point can observe an irregularity in sp2 hybridization 
at 1350 cm [62].Fig. 2 illustrates the Raman spectra readings of 
Graphite, Graphene Oxide, and Reduced Graphene Oxide. 

3.2. X-ray diffraction (XRD) 

The primary purpose of the X-ray diffraction technique is to 

Table 1 
Brief Top-down Graphene History [42].  

Method Typical dimension Lateral Advantage directly from graphite Disadvantage References 

Exfoliation using microtechnology Few layers lm to cm Large-scale, unaltered graphene sheets tiny scale production [43] 
Graphite is sonicated directly. layers, both single 

and numerous 
lm or sub- 
lm 

affordable, unaltered graphene Separation; low yield [44,45]  

Graphene is functionalized or 
exfoliated electrochemically. 

few and just one 
layer 

500–700 
nm 

Functionalized graphene’s high electrical 
conductivity; one-step functionalization and 
exfoliation 

Ionic liquids’ price [46] 

Super acids dissolve graphite. primarily one layer 300–900 
nm 

Scalable, unmodified graphene Hazardous chlorosulfonic acid use 
and the price of acid cleanup 

[46]  

Fig. 2. Graphite, Graphene Oxide, and Reduced Graphene Oxide were all given 
Raman spectra readings [63]. 
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determine the material’s phase using units of cell dimension [64]. X-ray 
diffraction (XRD) examinations of powder were done using a Bruker D8 
Advance diffractometer with Cu KR radiation. The 2 points between 2.1◦

and 2.2◦ for which the diffraction measurements were collected [65]— 
Fig. 2 implies graphite, graphite oxide, and graphene XRD patterns. 
Graphite exhibits a distinct and significant diffraction point at 26.6◦. 
Although oxygen molecules are present, the apex moves to 13.3◦. There 
is no peak following manufacturing, suggesting that graphene was 
produced synthetically [66]. 

3.3. X-ray photoelectron spectroscopy (XPS) 

The elemental compositions of graphene-emitter surfaces or func-
tionalized graphene can be investigated using the XPS method to fully 
comprehend the surface chemical states directly related to their elec-
trical properties [64–67]. 

3.4. Mossbauer spectroscopy 

Mossbauer spectroscopy can effectively determine nanomaterials’ 
magnetic characteristics and phase makeup based on iron oxides. 
Because of their comparable spinel crystal structures, magnetite Fe3O4 
and maghemite Fe2O3 are particularly challenging to distinguish by 
structural techniques, mainly when the sample contains a combination 
of various phases [68]. 

3.5. Transmission electron microscope (TEM) 

TEM is the method most frequently employed in graphene’s layer 
count and structural structure research. When the electron beam en-
gages the object of investigation, TEM pictures are created [69]. 

3.6. Fourier transform infrared analysis (FTIR) 

Thermo Nicolet iS10 instrument, manufactured by Thermo Fisher 
Scientific, Madison, Wisconsin, USA, was used to capture the FTIR 
spectra of GO and GO-AgNPs. (ATR) [70]. 

3.7. Scanning electron microscopy (SEM) 

Graphene’s morphology is investigated using SEM [71]. The gra-
phene’s shape is studied using SEM. Graphene folds, impurities, and 
gaps during the manufacturing process can all be found using SEM 
photography. Graphene’s ultrathin layers present a sharpness challenge 
[72]. 

3.8. Atomic force microscopy (AFM) 

The SuperSharpSilicon - Non-Contact/Tapping mode - High Reso-
nance Frequency - Reflex Coating feature captured images on an Asylum 
Research MFP-3D Stand Alone (MFP-3D-SA). (SSS-NCHR) [73]. 

4. Importance of graphene nanoparticles in dental implant 

To cure and prevent oral disorders, dental prostheses and implants 
containing many nanoparticleshave been employed recently [74–77]. 
The texture of nanoparticles is quite similar to that of actual teeth. Also, 
because it is made for any conceivable shape, it is straightforward to 
produce suited sizes [78,79]. Many nanoparticles possess antibacterial 
properties that prevent the spread of germs [80]. High-temperature 
resistance and surface coating capabilities are two advantages of NPs 
[81]. Nano dentistry will save time and money while relieving the pa-
tient’s emotional agony, which is why patients are lured to the dental 
field. Without a doubt, the development of nanomaterials will address 
dental difficulties [82]. 

Dental implants are made to function and provide stability when 

missing teeth are integrated with the oral tissues around them [83]. 
Dental implants’ long-term success and the reduction of complications 
depend heavily on the biocompatibility of the materials used [84]. 
Graphene nanoparticles, in this context, offer unique benefits that sup-
port improved biocompatibility and improved results in dental implant 
applications [85]. Graphene NPs promote osseointegration, the direct 
structural and functional connection between the implant and the bone 
[86]. Given their large surface area and distinctive physicochemical 
characteristics, the formation of new bone tissue around the implant is 
facilitated by improved cell adhesion and proliferation [87]. This strong 
integration ensures the stability and longevity of the implant, lowering 
the risk of implant failure. 

The biocompatibility of graphene nanoparticles aids in reducing 
inflammation and fostering tissue regeneration. When performing 
dental implant procedures, the surrounding tissues may experience an 
inflammatory response that, if not properly controlled, could obstruct 
healing and jeopardize the success of the implant [88]. Graphene 
nanoparticles have anti-inflammatory properties that lower inflamma-
tion and support an environment conducive to healing. Additionally, 
their capacity to promote tissue regeneration helps to develop strong 
bone and gum tissue, ensuring proper functional and esthetic results 
[89]. 

Graphene nanoparticles’ antibacterial properties aid their biocom-
patibility in dental implants [32]. Peri-implantitis, an inflammatory 
condition that affects the soft and hard tissues supporting the implant, 
can result from bacterial colonization around dental implants [90]. The 
inherent antibacterial properties of graphene nanoparticles effectively 
inhibit bacterial growth and stop infections [91]. This antimicrobial 
activity lowers the risk of complications and implant failure by preser-
ving the health and integrity of the surrounding tissues [92]. 

Significantly, as graphene-based materials become more prominent 
in dentistry, the biocompatibility of these materials is thoroughly 
researched [93]. Many tests have been conducted to determine whether 
graphene is biocompatible [94]. Physical interaction involving gra-
phene particles and cell membranes and the production of reactive ox-
ygen species explain graphene’s toxicity alongside numerous other 
factors (ROS) [95]. The nucleus can be harmed because the smaller 
particles can more readily puncture cell membranes. Furthermore, a 
relationship has been discovered between increased production of 
reactive oxygen species and higher concentrations of graphene sheets 
[96]. 

Dental and biomedical implants constructed out of steel can benefit 
from adding graphene or its covering due to the metal’s improved 
strength, durability, and toughness due to graphene compounds. In one 
instance, copper was given graphene to boost its elasticity and hardness. 
Its tensile strength was improved when graphene was added to an alloy 
of 1% Al and 1% Sn [97]. 

A pure graphene layer was recently created on nitinol (NiTi), a shape 
memory metal that can be used for dental and orthopedic implants [98]. 
Such a graphene covering significantly enhanced the osteogenic differ-
entiation of mesenchymal stem cells and integrin-mediated focal adhe-
sion on the implant surface. Different research examined the 
effectiveness of GO-coated collagen scaffolds in promoting alveolar bone 
repair and osteoblastic cytocompatibility of tooth extraction sockets 
[99]. 

Due to its remarkable physical strength, transparency, flexibility, 
and cheap cost, graphene is a perfect material for more robust, longer- 
lasting, and substantially more economical dental fillings, bridges, 
crowns, and implants [100–102]. Additionally, graphene has been 
demonstrated as beneficial in the long run in dental whitening proced-
ures, enhancing the action of bleaching by sensitizing hydrogen perox-
ide’s market penetration and functioning as a catalyst for the hydrogen 
peroxide’s activity, reducing the time of treatment, which decreases the 
aggression to the gums and causes less sensitivity [103]. An enhanced 
Osseointegration has been the focus of research on altering implant 
surfaces. In these conditions, graphene may produce an ideal implant 
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layer for complex tissue engineering to quicken bone regeneration 
[104]. An effort was made to increase the effectiveness of a dental 
implant using graphene, which currently has the maximum potential, in 
studies on administering medications like dexamethasone and BMP-2 
[103,105]. After implant insertion, the soft tissue and bone that sup-
port the teeth usually degenerate. So, by employing a graphene scaffold 
for a dental implant and its capacity to repair tissue, a chronic problem 
might be resolved [106–108]. 

To be considerably more precise, the present application of GO in 
dentistry has led to incredible results in treating oral cancer, drug de-
livery, bone tissue engineering, regenerative dentistry, and antibacterial 
activity [109–112]. Investigations in solutions against dental infections 
demonstrated the possibility of employing graphene-based materials 
(GM), such as graphene oxide (GO) or graphene Nanoplatelets (GNP), in 
dental materials [113,114]. 

5. Application of graphene nanoparticles in dental implants 

Many innovative treatments and technological innovations based on 
materials have been developed in the last few decades to treat various 
ailments. Due to their superior mechanical qualities, new metallic alloys 
like stainless steel and nitinol (NiTi) are frequently utilized in biomed-
ical implants [115]. The integrating biological system and tooth implant 
underwent fibro-osseous fusion following dental insertion. Osteogenic 
characteristics of the implant substance are necessary for osseointegra-
tion at the complex tissue interface. In contrast, at the soft tissue inter-
face, it is imperative to guarantee a firm epithelial seal to avoid bacterial 
invasion [116]. Recent nanotechnology investigations have reported 
that osseointegration rates and quality can be altered by changes to ti-
tanium implant-related characteristics like surface foundation, hydro-
philicity, surface roughness, topography, and shape [117]. Dentistry, 
often known as oral medicine, focuses on the early detection, diagnosis, 
and treatment of dental disorders. Recently, a substantial study on 
graphene-based nanoparticles for dentistry has been carried out by ex-
perts [118].Fig. 3 shows the significant aspects of graphene in the 
dentistry field. 

5.1. Tissue engineering 

Multiple imperfections brought on by tumors, injuries, illnesses, and 
other conditions are repaired and replaced using tissue engineering. It is 

generally recognized that scaffolds provide a surface on which different 
stem cells can adhere, proliferate, and differentiate during tissue crea-
tion. Numerous research demonstrated the potential of employing 
graphene-based materials to construct or defend tissue engineering 
scaffolds [119]. The formation of osteoblasts by various stem cell types 
is stimulated by graphene in numerous investigations. The hybrid sheet 
made of graphene and HAp exhibited excellent biomimetic weathering 
[120]. Furthermore, graphene’s unique properties, such as high surface 
area, mechanical strength, and electrical conductivity, make it an 
appealing candidate for promoting cell adhesion, proliferation, and 
differentiation. Bone, neural, cardiac, and skin tissue regeneration have 
all been successfully aided by graphene-based scaffolds [121]. However, 
more investigation is required to fully comprehend the long-term 
biocompatibility and safety of graphene-based materials in tissue engi-
neering applications [122]. Graphene’s potential in tissue engineering 
holds great promise for addressing various medical issues and enhancing 
patient outcomes as the field develops [123]. 

Various materials have been studied as scaffolds for periodontal 
tissue regeneration. These materials include collagen [124], poly 
(3-hydroxybutyrate-Co-4-hydroxybutyrate) [125], β-calcium phos-
phate [126], poly-lactic acid [127], poly-glycolic acid [128], poly-
caprolactone [129], and chitosan [130]. To be considered ideal for 
periodontal tissue engineering, a scaffold should effectively and pre-
cisely guide the proliferation and differentiation of stem cells into spe-
cific tissue lineages [131]. Using scaffolds in various applications raises 
concerns regarding their mechanical strength and rigidity, as high-
lighted in reference [132]. To address this challenge, novel materials are 
being explored to enhance scaffold performance, and one such prom-
ising addition is graphene derivatives. Researchers have successfully 
incorporated graphene oxide (GO) into hydroxyapatite (HA) scaffolds 
using techniques like spark plasma sintering [133] or sol-gel synthesis 
combined with biomimetic treatment [134]. These modified scaffolds 
exhibit notable strength and have demonstrated the capability to 
enhance the viability of mesenchymal stem cells (MSCs) while pro-
moting osteoblastic differentiation. 

The introduction of reduced graphene oxide (rGO) as a reinforce-
ment in hydroxyapatite led to an impressive 203% increase in fracture 
strength compared to pure HA. Furthermore, this scaffold exhibited the 
capacity to stimulate both cell proliferation and osteoblastic differenti-
ation, as elucidated in reference [135]. Another noteworthy develop-
ment by Nie et al. involved the creation of a three-dimensional porous 

Fig. 3. Applications of graphene nanoparticles and their derivatives in the field of dentistry.  
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scaffold using rGO and nanohydroxyapatite. This scaffold demonstrated 
its ability to encourage cell proliferation, enhance alkaline phosphatase 
(ALP) activity, and promote the expression of osteogenic genes in rat 
bone MSCs, as reported in reference [136]. In pursuit of bolstering the 
mechanical and biological attributes of scaffolds, researchers have 
turned to the development of multi-composite structures. Wang et al. 
embarked on a project to synthesize a scaffold by combining graphene 
oxide (GO) with a nanocomposite consisting of collagen and nano-
hydroxyapatite. The resultant product, characterized by its substantial 
porosity, showcased enhanced hydrophilicity and mechanical strength, 
along with exceptional proliferation potential [137]. Under the leader-
ship of Zhang, a research group has achieved a breakthrough by creating 
a technique that employs water-soluble graphene oxide-copper 
(GO–Cu) nanocomposites for the coating of porous calcium phos-
phate (CaP) scaffolds. This pioneering coating has proven to greatly 
improve the attachment and osteogenic differentiation of stem cells 
derived from rat bone marrow (BMSCs). Furthermore, when these 
scaffolds were implanted into rats with calvarial defects, they actively 
promoted both angiogenesis and osteogenesis [138]. In periodontal 
tissue regeneration and engineering, Table 3 offers a concise summary of 
the key findings and applications of graphene nanoparticles and their 
derivatives. 

5.2. Osseointegration and implant surfaces 

Enhancing osseointegration for ceramic and titanium implants is a 
major challenge. Surface treatments are being explored to improve 
success rates by enhancing antimicrobial properties and tissue-implant 
interaction. This interface is crucial for processes like inflammation, 
cell recruitment, protein adsorption, and biofilm formation [139]. 
Graphene’s utilization in implants stems from its remarkable charac-
teristics. These include its high biocompatibility, its capacity for phys-
ical interaction with biomolecules such as proteins, enzymes, or peptides 
[140], its effective promotion of stem cell stimulation and differentia-
tion [141], its long-term durability [142], its significant surface area 
that facilitates subsequent bioactivity [143], its enhancement of wear 
resistance [144], and its reinforcement of toughness [145]. Various 
methods, including chemical vapor deposition [146], plasma treatment 
[147], electrophoretic deposition [148], solution spray, dip-coating 
[149], and wet/dry transfer [150], have been employed to apply gra-
phene oxide-based coatings onto zirconia and titanium substrates. The 
treatment of inert surfaces with graphene oxide enhances mechanical 
characteristics and fosters cell adhesion and growth. This improvement 
is attributed to the presence of hydrophilic functional groups, such as 
hydroxyl or carboxyl, which facilitate these processes [151,152]. 

5.2.1. Graphene NPs coated titanium implants 
The application of GO-coated titanium implants had several positive 

effects, including the stimulation of cell proliferation, increased levels of 
alkaline phosphatase (ALP) activity, enhanced gene expression related 
to osteogenesis, and the promotion of protein expression associated with 
bone formation markers such as BSP, Runx2, and OCN [153]. Further-
more, it was observed that as the thickness of the graphene oxide layer 
increased, there was an improvement in ALP-positive areas and an in-
crease in the mineralization of the extracellular matrix [154]. However, 
the initial graphene-based coatings lacked the crucial three-dimensional 
morphology necessary for the osseointegration process. Consequently, 
the research team led by Qiu developed the first 3D porous coatings 
utilizing GO and rGO on pure titanium plates. These products demon-
strated high osteoinduction capacity and biocompatibility [155]. In 
their observations, Li et al. noted that when titanium was coated with 
GO, it resulted in greater new bone formation and fewer gaps between 
the implants and the surrounding peri‑implant bone tissue [156]. 

Efforts were made to enhance implant surfaces by incorporating 
graphene oxide (GO) and bioactive proteins. Within this realm, bone 
morphogenetic proteins (BMPs), a protein class renowned for their 

ability to stimulate bone growth, were explored. Particularly, BMP-2 
emerged as a potent factor in promoting stem cell differentiation into 
bone cells, thereby boosting implant integration by fostering bone 
regeneration at the implant-recipient site interface [157]. The implant 
surface underwent treatment involving graphene oxide, which served as 
a carrier for both BMP-2 and substance P. While no discernible dispar-
ities were noted in substance P release between the titanium and GO/Ti 
groups, the release of BMP-2 from Ti/GO exhibited a gradual pattern 
over a span of 14 days. In contrast, without GO treatment, the release of 
BMP-2 content occurred rapidly within the initial 24 h on the titanium 
surface [158]. Ren et al. [159] conducted a study that examined how 
DEX-GO-Ti and DEX-rGO-Ti, titanium foils loaded with dexamethasone 
and graphene oxide or reduced graphene oxide, impacted the prolifer-
ation and osteodifferentiation of rat bone mesenchymal stem cells 
(rBMSCs). The findings indicated that DEX-GO-Ti notably boosted cell 
proliferation, while rBMSCs cultured on DEX-GO-Ti displayed increased 
expression levels of calcium, proteins, and mRNA—markers closely 
linked to osteogenic differentiation. 

5.2.2. Graphene NPs coated zirconia-based implants 
While there is a substantial body of literature dedicated to enhancing 

the surface properties of titanium implants using graphene-based ma-
terials, research exploring the combination of these materials with 
zirconia-based implants is relatively scarce [160]. Zirconia ceramics 
(ZrO2) hold significant appeal due to their exceptional mechanical, 
physical, and chemical stability, as well as their resistance to corrosion 
and toxicity. These qualities contribute to reduced peri‑implant 
inflammation and favorable esthetic results [161]. Investigations in this 
area have primarily pursued two avenues: the introduction of 
graphene-based nanomaterials into zirconia coatings [162,163] and the 
homogenous integration of graphene-based nanomaterials within zir-
conia ceramics [164–166]. 

Graphene-based 2D nanomaterial (GBN) fillers for ceramic com-
posites can be categorized into two groups based on the number of 
graphene sheets they contain. Graphene nanoplatelets (GNP) have more 
than ten layers and a thickness below 100 nm, while multi-layered 
graphene (MLG) consists of fewer than ten layers. MLG can be further 
classified into two subgroups: reduced graphene oxide (rGO) and few- 
layer graphene (FLG), containing two to approximately five layers 
[167]. Another form of graphene sheets arranged as coaxial tubes with a 
nanoscale internal diameter is known as carbon nanotubes (CNT), which 
come in two distinct varieties: single-wall (SWCNTs) and multiple-wall 
(MWCNTs) [168]. It’s worth noting that both graphene sheets and car-
bon nanotubes tend to aggregate in their pure state due to excess free 
surface energy, resulting in instability and the folding of layers [169], 
primarily due to van der Waals forces [170]. When zirconia is combined 
with GBN, it has been demonstrated to enhance material toughness 
through various mechanisms, including but not limited to graphene 
pullout, bridging, crack deflection, and crack branching [167]. How-
ever, the accumulation of filler material can create stress concentration 
regions that may significantly compromise the material’s mechanical 
strength [168]. Table 4 presents the utilization of dental implants coated 
with graphene-based nanoparticles materials. 

5.3. Antimicrobial activity 

Graphene derivatives exhibit antimicrobial mechanisms stemming 
from their chemical and mechanical properties [171]. Concerning their 
mechanical aspects, both graphene oxide (GO) and reduced graphene 
oxide (rGO) are characterized by sharp edges capable of potentially 
damaging bacterial cell membranes [172]. The mechanical factors 
influencing this phenomenon encompass edge density and the angle at 
which the sheet contacts the cell membrane. Studies have demonstrated 
that smaller-sized GO sheets with smoother edges exhibit a higher edge 
density, resulting in a more potent antibacterial effect. This effect be-
comes evident at a contact angle of 37◦ and peaks at 90◦ [173]. Notably, 
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rGO has been found to exert a more pronounced impact than GO [174]. 
An additional antimicrobial mechanism relies on cellular uptake, 

wherein bacterial cells become trapped and isolated from their envi-
ronment upon contact with graphene sheets. This isolation deprives 
them of access to nutrients [175]. Interestingly, this effect is bolstered 
when GO sheets have larger lateral dimensions [176]. Consequently, we 
encounter a paradox: smaller dimensions are essential for a more pro-
nounced cutting effect, while larger GO sheets can lead to increased 
cellular uptake. As research indicates, GO can induce lipid peroxidation 
within bacteria [177]. This action is bactericidal, as it results in the 
disruption of microbial cell membranes. Graphene derivatives are 
thought to generate elevated levels of reactive oxygen species (ROS), 
leading to oxidative stress within bacterial cells [178]. Fig. 1 illustrates 
the primary mechanisms responsible for the antibacterial properties of 
both GO and rGO. 

Peng et al. [179] researched to explore the antibacterial properties of 
graphene derivatives against periodontopathogenic bacteria. They 
compared the effectiveness of rGO and silver (rGp-NS-Ag) composites to 
combat Candida albicans, Lactobacillus acidophilus, S. mutans, and 
Aggregatibacter actinomycetemcomitans with that of silver nano-
particles (AgNP) and standalone rGO nanosheets. The rGp-NS-Ag com-
posites exhibited significantly improved antimicrobial effects, as 
reported in their study. In another study, treating titanium surfaces with 
GO-Ag nanocomposites demonstrated a notable antibacterial impact 
against P. gingivalis, with an impressive percentage of 95.45%. 
Furthermore, it displayed a minimal bacterial adhesion rate of 4.55%. 
This effect was attributed to various factors, including alterations in 
microstructures, bacterial quantity, disruption of cell membranes, in-
duction of bacterial apoptosis, and changes in bacterial gene expression, 
as indicated by the collected data [180]. In their study, Wang and col-
leagues delved into the antimicrobial attributes of graphene-coated 
Ti-6Al-4 V when confronted with oral pathogens, including P. gingiva-
lis, F. nucleatum, and C. albicans. Their findings indicated that the 
Ti-6Al-4 V alloy, once coated with graphene, displayed increased 
resistance to these oral pathogens compared to the uncoated counter-
part. Notably, the graphene-coated Ti-6Al-4 V alloy exhibited a 
heightened capacity to generate reactive oxygen species (ROS) within 
the tested pathogens, surpassing the ROS production of the uncoated 
Ti-6Al-4 V alloy [181]. 

Furthermore, the introduction of zinc oxide-functionalized graphene 
oxide into polyetheretherketone demonstrated substantial antibacterial 
efficacy against a range of oral pathogens, including P. gingivalis, F. 
nucleatum, S. sanguinis, and S. mutans. Additionally, this approach 
effectively deterred the formation of biofilms through the induction of 
oxidative stress [182,183]. Research findings have also indicated that 
the utilization of DNA-aptamer-nanographene oxide led to the genera-
tion of reactive oxygen species specifically targeted at P. gingivalis, ul-
timately resulting in bactericidal effects [184]. Table 5 contains the 
primary research studies centered on investigating the antibacterial 
properties of graphene nanoparticles and their derivatives. 

5.4. Collagen membranes 

As a protective membrane to prevent soft tissue from penetrating the 
newly formed bone, the collagen membrane is frequently used in guided 
bone regeneration (GBR) and showed tissue regeneration (GTR) [185]. 
Collagen membrane still requires various changes to increase biocom-
patibility even though it has many positive characteristics, such as ease 
of manipulation and minimal surgical involvement [186]. Graphene’s 
exceptional mechanical strength [187], surface area [188], and elec-
trical conductivity [189] make it an appealing additive for improving 
the scaffold’s properties. According to studies, compared to conven-
tional collagen membranes, graphene-enhanced collagen membranes 
exhibit greater stability, improved cell adhesion, and quicker tissue 
regeneration [190]. The antimicrobial qualities of graphene also provide 
an added benefit in preventing infections during the healing process 

[191]. Additional study is still needed to fully comprehend the 
long-term effects and improve the formulation of collagen membranes 
modified with graphene for secure and efficient clinical applications. 
This cutting-edge strategy could revolutionize tissue engineering to 
regenerate bone and soft tissues, improving patient outcomes and 
minimizing surgical procedures. 

5.5. Teeth whiting 

As is well known, H2O2has been used for in-office bleaching for a 
very long period. To carry out the bleaching procedure, the H2O2 mol-
ecules must enter deeply into the molars. However, the relatively 
elevated H2O2 concentrations resulted in several adverse reactions, 
including irritated gums and dental sensitivity [192,193]. As a result, 
several improvements in teeth-whitening procedures have been created 
to expedite the process and reduce its adverse effects. A cobalt 
(Co)/tetraphenyl porphyrin (TPP)/rGO nanocomposite was described 
by Su et al., and it demonstrated superior tooth-whitening effectiveness 
when teeth were discolored by dyes, tea, and betel nuts compared to 
H2O2 alone [194]. Graphene-based materials are a possible catalyst for 
teeth-whitening applications when employed in the proper sorts and 
amounts. Table 6summarizes the materials made of graphene primarily 
used in dentistry research areas. 

5.6. Prosthodontic restorations 

In modern dentistry, a wide array of medical materials are employed, 
each with unique strengths and weaknesses. Within prosthodontics, a 
rich diversity of materials is utilized for indirect restorations, particu-
larly those integrated into CAD/CAM systems [195]. Given graphene’s 
superior mechanical attributes, ease of manipulation, potential for 
functionalization, and promising applicability in dental and biomedical 
contexts, a significant drive exists to develop novel, enhanced restor-
ative materials. These materials would possess distinctive compositions 
and microstructures, allowing for a comprehensive exploration of their 
physical and mechanical properties. Furthermore, this research aims to 
provide insights into their clinical performance and potential failure 
risks [196]. 

Over the past eight decades, polymethylmethacrylate (PMMA) resin 
has maintained its prominent status in prosthetic dentistry. This 
enduring popularity primarily stems from its utility in crafting complete 
and removable partial dentures. The reasons underpinning its favor-
ability include its ease of fabrication, cost-effectiveness, pleasing 
esthetic qualities, and a low modulus of elasticity. Furthermore, PMMA 
resin possesses a notable advantage in its ease of repair, rendering it a 
versatile choice among dental professionals. PMMA-based resins have 
found extensive utility in provisional restorations due to their charac-
teristic attributes, such as low mechanical properties, which make them 
unsuitable for permanent repairs. They also exhibit considerable poly-
merization shrinkage and a limited ability to inhibit biofilms, restricting 
their use in permanent restorations [197]. Endeavors to augment the 
mechanical properties of PMMA resins have yielded successful outcomes 
by integrating reinforcing phases, including glass and polyethylene fi-
bers [198]. 

Graphene nanofibers and nanosheets, propelled by recent advance-
ments in nanotechnology, have notably contributed to the evolution of 
glass fiber-reinforced materials (GFMs). These advancements have 
extended to incorporate their reinforcement phase in various polymers, 
including those based on polymethylmethacrylate (PMMA) resins [199, 
200]. Noteworthy is the fact that even at low concentrations, solutions 
containing graphene oxide (GO) and reduced graphene oxide (rGO) 
appear dark, and pristine graphene exhibits a significant absorption of 
white light [201]. 

Bacali et al. conducted a study that focused on enhancing PMMA 
(polymethyl methacrylate) by incorporating graphene-silver nano-
particles (Gr-Ag). The primary objectives of the research were to 
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evaluate the material’s mechanical characteristics, hydrophilicity, and 
morphology [202]. The study’s results revealed a noteworthy impact of 
Gr-Ag fillers on compression parameters, bending strength, and tensile 
strength, leading to an overall enhancement in the material’s mechan-
ical properties compared to pure PMMA. In another investigation by 
Bacali, the effectiveness of Gr-Ag-modified PMMA in combatting bac-
terial infections, along with its potential toxicity, monomer release, and 
mechanical properties, was examined. The findings demonstrated that 
this material exhibited robust antibacterial properties against various 
bacterial strains, including Gram-negative bacteria, S. aureus, Escher-
ichia coli, and S. mutans [203]. Table 7 lists the primary research studies 
exploring the applications of graphene nanoparticle derivatives in direct 
and indirect dental restorations. 

5.7. Restorative materials 

Graphene derivatives have found versatile applications across 
various dental fields due to their immense potential. Restorative 
dentistry often deals with materials like composites, adhesives, and 
cement, which must possess esthetic qualities and high hardness. 
However, these materials face limitations, such as significant polymer-
ization shrinkage and poor antibacterial properties. To overcome these 
challenges, researchers have integrated graphene nanoplates (GNPs) 
into porous and dissolution-prone substances like resins, cement, and 
adhesives. This innovative approach effectively reinforces commonly 
used dental composites and simultaneously exerts an anticaries effect 
[204]. 

The introduction of graphene nanosheets into two different bioactive 
calcium silicate cement powders, Biodentine, and Endocem Zr, has 
shown promising results in bonding time and hardness improvement. 
However, it’s noteworthy that Endocem Zr experienced notable bonding 

Fig. 4. Graphene derivatives exhibit antibacterial mechanisms encompassing cell entrapment, oxidative stress induction, and insertion through sharp edges [247].  

Table 2 
Summaries of each bottom-up method’s benefits and drawbacks and the nature, average size, and thickness of the graphene sheets produced by each method.  

Method Typical dimension Lateral Advantage Disadvantage References 

Restrictive self-assembly Single layer 100′s nm Thickness regulation Defects are present [248] 
CVD Few layers Very large (cm) Large size; high quality Small production scale [249–254] 
voltage spike Single, bi, and few 

layers 
Few 100 nm to a few l 
m 

Can produce10 g/h of graphene Low yield of graphene; carbonaceous 
impurities 

[255,256] 

Epitaxial development on 
SiC 

Few layers Up to cm size area of extremely pure graphene Tiny scale [257–263] 

Carbon nanotubes are 
unzipped 

Multiple layers few l m long 
nanoribbons 

Size is decided by picking the first 
nanotube. 

beginning point that is too expensive; 
oxidized graphene 

[44,264]  

Table 3 
The key findings and applications of graphene nanoparticles and their 
derivatives.  

Year Materials derived from 
graphene 

Consequences Refs. 

2020 GO/chitosan Osteogenic differentiation [265] 
2020 GO/IONPs/H Biocompatible; osteogenic activity; 

calcium deposits 
[266] 

2020 GO/HA/Au Biocompatibility; osteogenic 
differentiation 

[267] 

2019 monocytes activator GO 
complexed with CaP 

Activation of monocytes; 
stimulated osteogenesis 

[268] 

2019 GO-collagen aerogel Biomineralization; 
biocompatibility; osteogenic 
activity 

[269] 

2019 HA/rGO Proliferation; osteogenic activity [270] 
2019 Silk fibrinoid/GO/BMP-2 Biocompatibility; adhesion; 

proliferation; osteogenic 
differentiation 

[271] 

2018 Ti/GO/BMP-2/ 
vancomycin 

Osteogenic activity [272] 

2018 3D collagen sponge/GO Osteogenic differentiation; PDL- 
like and cementum-like tissue 
regeneration 

[273] 

2017 CaP/rGO Speed up bone neoformation [274] 
2017 Collagen-GO membrane Stiffness and roughness;osteogeni 

differentiation 
[275] 

2016 Poly(L-lactic-co-glycolic 
acid) with Tussah silk 
fibroin; GO 

Strong adherence; rapid growth; 
ALP; mineral deposition 

[276] 

2016 Silk-fibroin/GO Osteogenic and cementoblast 
differentiation 

[277] 

2015 rGO/HA nanocomposites Elevated levels of ALP; 
mineralization; and osteopontin; 
osteocalcin expression 

[278]  
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property impairments when adding GNPs. This suggests that while GNPs 
enhance the physical-mechanical properties of materials, their 
compatibility with all materials in terms of bonding may vary [205]. 
Moreover, incorporating graphene and graphene oxide (GO) into 
bioactive materials has demonstrated enhancements in the differentia-
tion and proliferation of human dental pulp stem cells and periodontal 
ligament stem cells. This advancement can potentially facilitate the 
regeneration of dental pulp and periodontal ligament tissues [206]. 

A unique graphene variant, Fluorinated Graphene (FG), has been 
developed and incorporated into glass ionomer cement, presenting a 
more appealing option than conventional gray GNPs due to its visually 
pleasing bright white color. FG has been used to modify poly(acrylic 
acid)-based glass ionomer cement types (GICs), improving mechanical, 
tribological, and antibacterial properties. Consequently, GIC/FG com-
posites exhibit enhanced Vickers microhardness, compression, flexural 
strength, and reduced friction coefficients. This widens the application 
of glass ionomer cement in restorative dentistry for various procedures, 
including restoring non-carious and carious lesions, class III and class V 
restorations, and crown cementation. Furthermore, these compounds 
exhibit potent antibacterial activity against Staphylococcus aureus and 
S. mutans while maintaining a favorable fluoride ion release rate [207]. 

The advantages of graphene-based materials (GBMs) have led to 
their integration into adhesive materials, where they play a crucial role 
in replacing infected dental tissues and preventing the progression of 
decay [208]. Adhesive materials are essential for bonding dental com-
posites to dental hard tissues, especially dentin. GBMs, specifically 
graphene quantum dots, have been developed in conjunction with 1-eth-
yl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) to inhibit the 
degradation of collagen fibrils. These quantum dots effectively inhibit 
collagenase activity and matrix metalloproteinases (MMPs) by cova-
lently linking collagen fibers, reducing the enzymatic hydrolysis of 

Table 4 
The utilization of dental implants coated with graphene-based nanoparticle 
materials.  

Year Materials derived from 
graphene 

Consequences Refs 

2022 Graphene nanoplatelets 
and yttria-stabilized 
zirconia 

Resistance to aging [279] 

2022 Reduced graphene oxide 
(rGO)-coated sandblasted 

Enhanced bone fusion resulting in a 
quicker healing process 

[280] 

2021 GO/Zirconia Osteogenic differentiation [281] 
2021 rGO nanosheets Osteogenic differentiation [282] 
2020 GO/Ti Biocompatibility; osteogenic 

differentiation 
[283] 

2020 GO Re-osteogenesis [284] 
2020 GO/Ti Proliferation; adhesion, osteogenic 

differentiation, and 
osteointegration 

[285] 

2019 GO/HA/chitosan Promoted apatite formation [286] 
2019 Magnesium alloy with 

graphene nanoparticles 
High cytocompatibility and 
osteogenic properties 

[287] 

2019 GO/chitosan/HA Osteogenic differentiation [288] 
2018 Single-layer graphene 

sheets 
Osteogenic differentiation [289] 

2018 GO/aspirin/Ti Proliferation; osteogenic 
differentiation 

[290] 

2017 rGO/Ti Rough surface biocompatibility; 
high hydrophilicity; increased ALP 
activity; collagen secretion; 
osteogenic differentiation 

[291] 

2017 GO/Ti/Dex Stimulated cell growth; hastened 
the process of bone formation 

[292] 

2017 nGO/PEG/PEI/siRNA Osteogenic differentiation; 
osteointegration 

[293]  

2016 GO Osteogenic differentiation [153] 
2015 rGO/Dex Osteogenic differentiation [294] 
2013 Functionalized 

multiwalled carbon 
nanotubes on zirconia 

Enhanced cell attachment [295]  

Table 5 
Antibacterial properties of graphene nanoparticles and their derivatives.  

Year Materials 
derived from 
graphene 

Microorganism causing 
disease 

Consequences Refs. 

2022 Nanographene 
oxide 

P. gingivalis Biofilm and the 
decrease in 
bacterial 
metabolic activity 

[296] 

2022 Ti/6Al/4V C. albicans Inhibition of 
bacteria through 
the production of 
reactive oxygen 
species (ROS) 

[297] 
P. gingivalis 
F. nucleatum 

2021 Ti/0.125G S. mutans Inhibited the 
proliferation of 
bacteria 

[298] 
F. nucleatum 
P. gingivalis 

2021 PEEK/GO S. mutans  
Inhibition of 
bacteria 

[299] 
F. nucleatum 
P. gingivalis 

2020 Nano-graphene 
oxide with 
antisense vicR 
RNA plasmid 

S. mutans Gene expressions 
linked to 
virulence were 
decreased, 
biofilm formation 
was suppressed, 
and the 
accumulation of 
extracellular 
polymeric 
substances (EPS) 
was inhibited 

[300] 

2020 GO E. coli Antibacterial 
effectiveness 

[301] 

2020 GO S. mutans Achieving an 
antimicrobial 
effectiveness of 
up to 80% 

[302] 

2020 GO S. mutans;  
Getting rid of any 
remaining 
bacteria and 
preventing the 
reformation of 
biofilm 

[303] 
P. gingivalis; 
F. nucleatum 

2019 G/AgNp S. aureus Activity that 
inhibits or kills 
bacteria 

[304] 
S. mutans 
E. coli 

2019 rGO/Ag S. mutans The antimicrobial 
effect achieved 
through the 
capture of cells 
and the 
bactericidal 
properties of 
silver ions 

[305] 

2019 GQD A. 
actinomycetemcomitans 

Inhibition of 
bacteria through 
the production of 
reactive oxygen 
species (ROS) 

[306] 

P. gingivalis 
P. intermedia 

2018 Ag/GNP E. coli Cell entrapment 
to induce 
antimicrobial 
effects 

[307] 

2018 GO-AgNPs S. aureus The inhibition of 
microorganisms 
through the 
induction of cell 
membrane 
disruption and 
the generation of 
reactive oxygen 
species (ROS) 

[308] 

2018 GO/AgNPs C. albicans  
The destruction of 
cell membranes 

[304] 

(continued on next page) 
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collagen fibers, and enhancing the durability of dental bonding material 
[209]. Furthermore, GNPs are frequently employed as fillers in 
polymer-based dental adhesives due to their potent antimicrobial and 
antibiofilm properties. These nanocomposites filled with GNPs effec-
tively suppress the activity of S. mutans cells while maintaining their 
bonding properties [210]. Additionally, research has explored using 
silver nanoparticles with reduced nanographene oxide and graphene 
nanoplates to enhance adhesive properties, promoting better bonding 
between resin and dentin while maintaining cell viability [211]. 
Another innovative approach involves the incorporation of graphene 
oxide and hydroxyapatite into resin-dentin bonds, resulting in improved 
durability, adhesive properties, and remineralization capabilities [212]. 

Researchers have also successfully developed a composite material 
known as nHAP/MWCNT-GO, comprising nanohydroxyapatite, multi- 
walled carbon nanotubes, and graphene oxide. This material forms a 
surface film that effectively resists acid and minimizes dentin erosion 
[213]. Additionally, graphene oxide (GO) modifications by incorpo-
rating different nanoparticles, such as calcium fluoride and silver, have 
shown promise in preventing dentin decalcification. GO combined with 
silver and silver-calcium fluoride has exhibited inhibition of S. mutans, 
with low cytotoxicity observed except at higher concentrations [214]. 
To address the bonding challenges with zirconia, the application of a 
silane primer has been found to be influential. Incorporating GO sheets 
into silane primers has emerged as a viable option for improving the 
mechanical properties of the adhesive layer in resin composites bonded 
to ZrO2, leading to enhanced shear bond strength, surface roughness 
improvement, and a slight increase in water contact angle [215,216]. 

6. Present challenges and future prospects 

6.1. Present challenges 

Much research has been done on the biological applications of gra-
phene and its derivatives. However, this subject is still in its infancy, and 
certain significant obstacles must be solved before this sector can be 
widely marketed [217]. One problem in creating dental implants that 
should be avoided is mechanical failure following insertion brought on 
by flaws. Defects in graphene implants vary in size and shape according 
to how they were made. As a result, the first hurdle for graphene and its 
derivatives is to study created flaws during the fabrication of graphene 
implants for large-scale applications [218]. 

Long-term toxicity and in vivo toxicity mechanisms present another 
challenge in the clinical approaches to graphene and its derivatives 
[219]. Additionally, recent research has looked into the toxicity of 
graphene and its products in biological systems [220,221]. According to 
specific reports, biomaterials based on graphene may generate oxidative 
debris that could cause cytotoxicity. Consequently, it is important to 
closely check the quality of graphene and its derivatives throughout the 
bio-functionalization process [222]. Furthermore, some studies show 
that graphene and graphene oxide (GO) are toxic to mice in a 
dose-dependent manner [223,224]. In contrast, functionalized graphene 
oxide is less damaging in vitro and in vivo (for example, by covering it 
with a biocompatible polymer) [225]. 

Further research must determine whether graphene and its 

Table 5 (continued ) 

Year Materials 
derived from 
graphene 

Microorganism causing 
disease 

Consequences Refs. 

and the induction 
of oxidative stress 
are responsible 
for the 
antimicrobial 
effects 

2018 GO E. coli Inhibition of 
microbial growth 
through the 
destabilization of 
bacterial cell 
membranes 

[309] 
S. aureus 

2017 rGNs/Ag C. albicans Greater 
antimicrobial 
efficacy 
compared to R- 
GN and AgNPs 
separately 

[179] 
L. acidophilus 
S. mutans 
A. 
actinomycetemcomitans 

2017 Ti/GO/Ag S. aureus The antimicrobial 
effect involves 
bacterial cells 
shrinking, getting 
punctured, 
breaking apart, 
and ultimately 
bursting 

[310] 
S. mutans 
P. gingivalis 

2017 Ag-rGO E. coli Silver ions kill 
bacteria by 
trapping them in 
cells, damaging 
cell membranes, 
and causing 
oxidative stress 

[311] 

2016 GMgO-Ag E. coli The antimicrobial 
effect resulting 
from the 
disruption of cell 
membranes 

[312] 

2016 GO and rGO- 
poly(dopamin) 

S. aureus Antimicrobial 
effectiveness 
through the 
induction of cell 
membrane 
disruption, the 
generation of 
reactive oxygen 
species (ROS), 
and electron 
transfer 

[313] 

2015 GO S. mutans The disruption of 
cell membranes 
leads to 
antimicrobial 
effects 

[314] 
F. nucleatum 
P.gingivalis 

2015 PLGA/ 
chitosan/GO/ 
AgNPs 

S. aureus The antibacterial 
effects through 
silver’s catalytic 
oxidation, 
disruption of cell 
membranes, and 
the generation of 
reactive oxygen 
species (ROS) 

[315] 

2014 GQD E. coli Inhibition of 
microorganisms 
through 
producing 
reactive oxygen 
species (ROS), 
light-induced 
lethality, and 
impairment of 
cell membranes. 

[316]  

Table 5 (continued ) 

Year Materials 
derived from 
graphene 

Microorganism causing 
disease 

Consequences Refs. 

2013 GO E. coli The antimicrobial 
effectiveness is 
achievedthrough 
methods such as 
insertion, cutting 
at the edges, and 
lipid extraction. 

[317]  
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derivatives have adequate drug-loading capacity for practical applica-
tions. The toxicity profiles of graphene and its products in vitro and in 
vivo, as well as their biocompatibility and biodegradability, should be 
taken into consideration before determining the precise chemical 
modification processes of graphene and its derivatives for cell mem-
brane barrier penetration and intracellular release for drug delivery 
[226]. The in vivo toxicity and manufacturing characteristics of gra-
phene and its products, both of which need rigorous analysis, are two 
critical barriers to their usage. 

Since graphene can be harmful on a fundamental level, the enzy-
matic degradation of graphene is an important topic. Instead, if there are 
microorganisms that can break down graphene and its derivatives, the 
permanence of these materials in the body will be considerably reduced. 
These studies must determine the nature of the graphene particles’ 
degradation products. Enzymes can break down graphene and release 
potentially harmful byproducts. We must investigate the composition of 
these subsidiaries and their impact on health [227]. 

The amount of graphene to coat biomaterial granules can affect bone 
response.The predominant component of porcine bone tissue, hy-
droxyapatite, was visible in the FTIR spectra of porcine bone. The 
phosphate group caused the stretching band at approximately 1036 
cm− 1; the carbonate band at 874 cm-1 was caused by carbonate; and the 
P-O bending caused the bands at 565 and 604 cm− 1. O–H group’s 
stretching band was roughly 3430 cm− 1, while its bending band was 
approximately 1640 cm− 1. It’s unlikely that this technique is sensitive 
enough to detect the small amount of GO used to coat the porcine bone 
granules [228]. 

6.2. Future prospects 

Graphene nanoparticles have become versatile instruments with a 
wide range of potential applications [229]. Their large surface area and 
functionalization capability make it possible to deliver drugs with 
pinpoint accuracy, increasing drug efficacy and reducing side effects 
[230]. They have been used in imaging as contrast agents in MRI [231] 
and CT scans [232] and for bioimaging [233]. Graphene nanoparticles 
can also potentially treat cancer using photothermal and photodynamic 
methods [234]. They are also helpful for developing biosensors because 
they can detect biomolecules and pathogens quickly and with high 
sensitivity [235]. 

In the last ten years, graphene-based nanomaterial has found wide-
spread application in industries other than medicine [236]. The primary 
emphasis of research on using graphene in dental materials has been on 
two methods: first, creating novel dental materials solely from GFNs, 
and second, modifying existing dental materials by adding the proper 
GFNs to various substrates. The primary emphasis of research on using 

graphene in dental materials has been on two methods: first, creating 
novel dental materials solely from GFNs, and second, modifying existing 
dental materials by adding the proper GFNs to various substrates [117]. 

While graphene nanoparticles have shown promise in imaging and 
drug delivery, there is still room for more research in fields like targeted 
therapy [237], biosensing [238], and regenerative medicine [239]. For 
various medical applications, researchers could look into graphene 
nanoparticles’ biocompatibility, toxicity, and long-term effects [240]. 
Furthermore, Graphene-based materials have been shown to have 
excellent mechanical strength and conductivity, which makes them the 
best choice for energy storage devices. Graphene nanoparticle optimi-
zation for supercapacitors, lithium-ion batteries, and other advanced 
energy storage technologies could be the main topic of future research 
[241]. 

It is possible to use the special qualities of graphene nanoparticles to 
clean up the environment [242]. Investigating their potential for 
pollutant adsorption [243], water purification [244], and air filtration 
[245] could lead to efficient and long-term solutions to environmental 
problems. Moreover, Graphene nanoparticles have the potential to be 
used as catalysts in a variety of chemical reactions due to their large 
surface area and high reactivity [246]. Investigating their catalytic 
properties might create more effective and eco-friendly procedures in 
sectors like chemical production and renewable energy generation. 

The development of graphene and its derivatives as biological ma-
terials has become an interesting research area in recent years. This 
study topic will need appropriate future research orientations to develop 
into a market-oriented research area because it is still in its early phases. 
Despite its other qualities, including mechanical strength, electrical 
conductivity, and thermal stability, graphene is a promising candidate 
due to its functionalization potential with various biomaterials and 
biomolecules. One of the most important future objectives for the 
biomedical therapeutic application of graphene and its derivatives, such 
as antibacterial and anti-cancer medications, is conceptualizing its 
toxicity profile (Fig. 4,Table 2). Additionally, more research should be 
done on the surface chemistry design of graphene and its products for 
potential use in vivo gene delivery or treatment of genetic disorders 
[227]. 

7. Conclusion 

Several distinctive qualities of graphene nanoparticles make them 
desirable for use in dental implants. They can interact with biological 
tissues more effectively because they have a larger surface area-to- 
volume ratio. The strength and longevity of dental implants might be 
increased by their superior mechanical and highly conductive qualities. 
Dental implants with graphene nanoparticles are a very new and 

Table 6 
Materials made of grapheneare primarily used in dentistry research areas.  

Applications Types of graphene Properties Application types References 

Periodontal tissue regeneration GO/ 3D collagensponge periodontal ligament-like tissue regeneration 
Osteogenic differentiation 

Scaffolds [318] 

Collagenemmenber GO Inflammation effect 
Roughness and stiffness 
Osteogenic differentiation 

Coatings [319] 

Dental implant and abutment Single-layer graphene sheets Osteogenic differentiation  Coatings  [320]  

rGOnanosheets  Osteogenic differentiation Coatings [321] 

GO/Minocycline hydrochloride (MH)  Antibacterial property Coatings [322] 

Bone tissue engineering Monolayer graphene  Osteogenic differentiation  Coatings  [323]  

Graphene/HA Biomimetic mineralization Scaffolds [324] 
Dental pulp regeneration Graphene dispersion  Neural differentiation  Scaffolds  [325]  

NFs/rGO/PCL Neural differentiation Scaffolds [326]  
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exciting study area. While further research is needed to fully understand 
the potential benefits and risks of using these particles in dental im-
plants, preliminary data suggest they may be effective in improving 
these procedures’ success rates and long-term outcomes. By analyzing 
recent research on graphene NPs, this review paper can advance scien-
tific knowledge in dental implants. It is possible to aggregate the 
available data, identify research gaps, and suggest potential directions 
for future research. Dental implants containing graphene nanoparticles 
have the potential to advance clinical practice, highlight prospective 
growth areas, and foster interdisciplinary collaboration. Dental pro-
fessionals can confidently decide whether to utilize zirconium nano-
particles in dental implant procedures using this knowledge. In this 
report, the use of graphene nanoparticles in dental implants is studied 
along with areas that might need improvement. This might help to focus 

future research and lead to the development of more effective dental 
implant tools and procedures. In the future, many more plant species can 
be used and reported in the green, quick production of metal oxide 
nanoparticles. 
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Martínez, S. Cuevas-Guajardo, P.A. Sánchez-Reyna, H &Mendieta-Zeron, 
Perspectives for the use of silver nanoparticles in dental practice, Int. Dent. J. 61 
(6) (2011) 297–301, https://doi.org/10.1111/j.1875-595X.2011.00072.x. 

[8] M. Auffan, J. Rose, J. Bottero, G.V. Lowry, J. Jolivet, M.R &Wiesner, Towards a 
definition of inorganic nanoparticles from an environmental, health and safety 
perspective, Nat. Nanotechnol. 4 (10) (2009) 634–641, https://doi.org/10.1038/ 
nnano.2009.242. 

[9] O. Salata, Applications of nanoparticles in biology and medicine, 
J. Nanobiotechnol. 2 (2004) 3, https://doi.org/10.1186/1477-3155-2-3. 

[10] C.B. Murray, C.R. Kagan, M.G. Bawendi, Synthesis and characterisation of 
monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. Rev. 
Mater. Sci. 30 (2000) 545–610, https://doi.org/10.1146/annurev. 
matsci.30.1.545. 

[11] L. Mazzola, Commercializing nanotechnology, Nat. Biotechnol. 21 (2003) 
1137–1143, https://doi.org/10.1038/nbt1003-1137. 

[12] R. Paull, J. Wolfe, P. Hebert, M. Sinkula, Investing in nanotechnology, Nat. 
Biotechnol. 21 (2003) 1134–1147, https://doi.org/10.1038/nbt1003-1144. 

[13] Unmesha. Ray, The Health Impact of Nanotechnology, AZoNano (2022). 
Retrieved on April 01, 2023 from, https://www.azonano.com/article.aspx?Artic 
leID=5113. 

[14] M.R. Zakaria, M.H. Abdul Kudus, H. MdAkil, M.Z. MohdThirmizir, Comparative 
study of graphene nanoparticle and multiwall carbon nanotube filled epoxy 
nanocomposites based on mechanical, thermal and dielectric properties, Compos. 
Part B Eng. 119 (2017) 57–66, https://doi.org/10.1016/j. 
compositesb.2017.03.023. 

[15] M. Cao, X. Ming, K. He, L. Li, S. Shen, Effect of Macro-, Micro- and Nano-Calcium 
carbonate on properties of cementitious Composites—A review, Materials 12 (5) 
(2019) 781, https://doi.org/10.3390/ma12050781. 

[16] E.K. Kim, J. Kim, Y. Chang, D. Turcio-Ortega, J. Filip, Effects of Metal Ions on the 
Reactivity and Corrosion Electrochemistry of Fe/FeS Nanoparticles, ACS 
Publications 48 (7) (2014) 4002–4011, https://doi.org/10.1021/es405622d. 

[17] A. Korayem, N. Tourani, M. Zakertabrizi, A. Sabziparvar, W. Duan, A review of 
dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry 

Table 7 
The applications of graphene nanoparticle derivatives in both direct and indirect 
dental restorations.  

Year Materials derived from 
graphene 

Consequences Refs. 

2022 PMMA/GO—Commercial 
CAD-CAM resin block 

Enhanced flexural strength [327] 

2022 PMMA/GNP—3D printed 
resin 

Improved strength, hardness, 
and elasticity; antimicrobial 
activity 

[328] 

2022 Soft denture liner PMMA 
based/GO—incorporated into 
the liquid 

No impact on the firmness of 
denture liners 

[329] 

2022 GO/montmorillonite Enhancing the stability of 
mineralization in enamel and 
dentin 

[330] 

2021 PEEK/GNP—injection 
molding 

Higher flexural, tensile, and 
compression strength 

[331] 

2021 Bone cement PMMA-based/ 
GO incorporated into the 
liquid 

Enhanced bone cement 
compression strength 

[86] 

2021 PMMA/GO—Commercial 
CAD-CAM resin block 

Reduced hardness [332] 

2020 PMMA/GO—Commercial 
CAD-CAM resin block 

Enhanced flexural strength [333] 

2020 PMMA/GO—incorporated 
into the liquid  Reduced bending strength 

[334] 

2019 PMMA/GO—Commercial 
CAD-CAM resin block 

The addition of GO into PMMA 
did not have any effect on 
hardness or flexural strength 

[335] 

2019 G/AgNp Reduced harmful effects and 
enhanced bending 
characteristics 

[336] 

2019 GO Improved adhesion strength in 
shear 

[337] 

2019 Graphite Fluoride bioactive 
glass 

Enamel and dentin 
mineralization 

[338] 

2018 PMMA/GO—incorporated 
into the liquid 

Elevating the GO 
concentrations to a level of 0.5 
wt% or higher resulted in 
enhanced hardness and flexural 
strength in PMMA 

[339] 

2018 Fluorinated graphene Elevated microhardness and 
enhanced compressive strength; 
reduced friction coefficient 

[340] 

2017 Gp-NSs Improved physical and 
mechanical characteristics of 
bioactive cement 

[341] 

2017 nHA/MWCNTO/GO Formation of a protective layer 
for dentin against erosive 
processes 

[342] 

2017 rGO–HA The elasticity is now ten times 
better than that of HA 

[343] 

2017 GO-based fluorhydroxyapatite Enamel and dentin 
mineralization 

[344] 

2013 PMMA/rGO—incorporated 
into the liquid 

Elevated levels of concentration 
led to a reduction in the tensile 
strength of PMMA, while lower 
concentrations did not result in 
any alterations 

[345]  

M.H. Mobarak et al.                                                                                                                                                                                                                           

https://doi.org/10.1016/j.heliyon.2023.e15973
https://doi.org/10.1016/j.heliyon.2023.e15973
https://doi.org/10.1002/aic.10087
https://doi.org/10.1016/j.apsadv.2023.100462
https://doi.org/10.1016/j.apsadv.2023.100462
https://doi.org/10.1016/j.rineng.2023.101347
https://doi.org/10.1016/j.rineng.2023.101347
https://doi.org/10.3390/ma3063468
https://doi.org/10.3390/ma3063468
https://doi.org/10.5281/zenodo.1403844
https://doi.org/10.1111/j.1875-595X.2011.00072.x
https://doi.org/10.1038/nnano.2009.242
https://doi.org/10.1038/nnano.2009.242
https://doi.org/10.1186/1477-3155-2-3
https://doi.org/10.1146/annurev.matsci.30.1.545
https://doi.org/10.1146/annurev.matsci.30.1.545
https://doi.org/10.1038/nbt1003-1137
https://doi.org/10.1038/nbt1003-1144
https://www.azonano.com/article.aspx?ArticleID=5113
https://www.azonano.com/article.aspx?ArticleID=5113
https://doi.org/10.1016/j.compositesb.2017.03.023
https://doi.org/10.1016/j.compositesb.2017.03.023
https://doi.org/10.3390/ma12050781
https://doi.org/10.1021/es405622d


Applied Surface Science Advances 18 (2023) 100470

13

perspective, Construct. Build. Mater. 153 (2017) 346–357, https://doi.org/ 
10.1016/j.conbuildmat.2017.06.164. 

[18] K. Bhattacharya, S.P. Mukherjee, A. Gallud, S.C. Burkert, S. Bistarelli, S. Bellucci, 
M. Bottini, A. Star, B. Fadeel, Biological interactions of carbon-based 
nanomaterials: From coronation to degradation, Nanomed. Nanotechnol. Biol. 
Med. 12 (2) (2016) 333–351, https://doi.org/10.1016/j.nano.2015.11.011. 

[19] S. Kumar, M. Nehra, D. Kedia, N. Dilbaghi, K. Tankeshwar, K. Kim, 
Nanotechnology-based biomaterials for orthopaedic applications: Recent 
advances and future prospects, Mater. Sci. Eng. C 106 (2020), 110154, https:// 
doi.org/10.1016/j.msec.2019.110154. 

[20] C.J. Bullock, C. Bussy, Biocompatibility Considerations in the Design of Graphene 
Biomedical Materials, Adv. Mater. Interf. 6 (11) (2019), 1900229, https://doi. 
org/10.1002/admi.201900229. 

[21] X. Qi, F. Jiang, M. Zhou, W. Zhang, X. Jiang, Graphene oxide as a promising 
material in dentistry and tissue regeneration: A review, Smart Mater. Med. 2 
(2021) 280–291, https://doi.org/10.1016/j.smaim.2021.08.001. 

[22] J. Butler, R.D. Handy, M. Upton, A. Besinis, Review of antimicrobial nanocoatings 
in medicine and dentistry: mechanisms of action, biocompatibility performance, 
safety, and benefits compared to antibiotics, ACS Nano 17 (8) (2023) 7064–7092, 
https://doi.org/10.1021/acsnano.2c12488. 

[23] F. Lorusso, F. Inchingolo, A.G. Lucchina, G. Scogna, A. Scarano, Graphene-doped 
Poly(methyl-methacrylate) as an enhanced biopolymer for medical device and 
dental implant, J. Biol. Regul. Homeost. Agents 35 (2) (2021) 195–204, https:// 
doi.org/10.23812/21-2supp1-20. Suppl. 1. 

[24] L. Suo, N. Jiang, Y. Wang, P. Wang, J. Chen, X. Pei, J. Wang, Q. Wan, The 
enhancement of osseointegration using a graphene oxide/chitosan/ 
hydroxyapatite composite coating on titanium fabricated by electrophoretic 
deposition, J. Biomed. Mater. Res. Part B 2019 (2019) 635–645, 107B. 

[25] Mohammad Hasanzadeh&BalalKhalilzadeh NasrinShadjou, Graphene based 
scaffolds on bone tissue engineering, Bioengineered 9 (1) (2018) 38–47, https:// 
doi.org/10.1080/21655979.2017.1373539. 

[26] N. Shadjou, M. Hasanzadeh, Graphene and its nanostructure derivatives for use in 
bone tissue engineering: Recent advances, J. Biomed. Mater. Res. Part A 104 (5) 
(2016) 1250–1275, https://doi.org/10.1002/jbm.a.35645. 

[27] J. Li, Y. Liu, L. Yuan, B. Zhang, E.S. Bishop, K. Wang, J. Tang, Y. Zheng, W. Xu, 
S. Niu, L. Beker, T.L. Li, G. Chen, M. Diyaolu, A. Thomas, V. Mottini, J.B. Tok, J. 
C. Dunn, B. Cui, Z. Bao, A tissue-like neurotransmitter sensor for the brain and 
gut, Nature 606 (7912) (2022) 94–101, https://doi.org/10.1038/s41586-022- 
04615-2. 

[28] M. Tahriri, M. Del Monico, A. Moghanian, M. Tavakkoli Yaraki, R. Torres, 
A. Yadegari, L. Tayebi, Graphene and its derivatives: Opportunities and 
challenges in dentistry, Mater. Sci. Eng. C 102 (2019) 171–185, https://doi.org/ 
10.1016/j.msec.2019.04.051. 

[29] A. Strohbach, R. Busch, Predicting the In Vivo Performance of Cardiovascular 
Biomaterials: Current Approaches In Vitro Evaluation of Blood-Biomaterial 
Interactions, Int. J. Mol. Sci. 22 (21) (2020) 11390, https://doi.org/10.3390/ 
ijms222111390. 

[30] W. Zhang, N. Wang, M. Yang, T. Sun, J. Zhang, Y. Zhao, N. Huo, Z. Li, Periosteum 
and development of the tissue-engineered periosteum for guided bone 
regeneration, J. Orthop. Transl. 33 (2022) 41–54, https://doi.org/10.1016/j. 
jot.2022.01.002. 

[31] during the remodelling phase, the utilization of graphene’s conductivity can 
contribute to preserving a consistent bone-implant interface, thereby enhancing 
the long-term effectiveness of the implant. 

[32] A.M. Inchingolo, G. Malcangi, A.D. Inchingolo, A. Mancini, G. Palmieri, C. Di 
Pede, F. Piras, F. Inchingolo, G. Dipalma, A. Patano, Potential of Graphene- 
Functionalized Titanium Surfaces for Dental Implantology: Systematic Review, 
Coatings 13 (4) (2023) 725, https://doi.org/10.3390/coatings13040725. 

[33] J. Malig, et al., Wet chemistry of graphene, Electrochem. Soc. Interf. 20 (1) 
(2011) 53–56. 

[34] M. Lian, et al., Kevlar®-functionalized graphene nanoribbon for polymer 
reinforcement, Polymer 55 (10) (2014) 2578–2587. 

[35] V. Georgakilas, et al., Noncovalent functionalization of graphene and graphene 
oxide for energy materials, biosensing, catalytic, and biomedical applications, 
Chem. Rev. 116 (9) (2016) 5464–5519. 

[36] R.J. Young, et al., The mechanics of graphene nanocomposites: a review, Compos. 
Sci. Technol. 72 (12) (2012) 1459–1476. 

[37] Y. Xu, et al., Flexible graphene films via the filtration of water-soluble 
noncovalent functionalized graphene sheets, J. Am. Chem. Soc. 130 (18) (2008) 
5856–5857. 

[38] Q. Su, et al., Composites of graphene with large aromatic molecules, Adv. Mater. 
21 (31) (2009) 3191–3195. 

[39] H. Xie, et al., Graphene for the development of the next-generation of 
biocomposites for dental and medical applications, Dent. Mater. 33 (7) (2017) 
765–774. 

[40] S. Anu Mary Ealia, M.P. Saravanakumar, IOP Conf. Ser.: Mater, Sci. Eng. 263 
(2017), 032019, https://doi.org/10.1088/1757-899X/263/3/032019. 

[41] S.Anu Mary Ealia, M.P. Saravanakumar, A review on the classification, 
characterisation, synthesis of nanoparticles and their application, in: IOP 
conference series: materials science and engineering 263, IOP Publishing, 2017. 

[42] Q. Abbas, P.A. Shinde, M.A. Abdelkareem, A.H. Alami, M. Mirzaeian, A. Yadav, A. 
G. Olabi, Graphene Synthesis Techniques and Environmental Applications, 
Materials 15 (21) (2022), https://doi.org/10.3390/ma15217804. 

[43] A.B. Bourlinos, V. Georgakilas, R. Zboril, T.A. Steriotis, A. Stubos, Liquid-phase 
exfoliation of graphite towards solubilized graphenes, Small 5 (16) (2009) 
1841–1845, https://doi.org/10.1002/smll.200900242. 

[44] A. Hirsch, Unzipping carbon nanotubes: a peeling method for the formation of 
graphene nanoribbons, Angew. Chem. Int. Ed. 48 (36) (2009) 6594–6596, 
https://doi.org/10.1002/anie.200902534. 

[45] N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, one-step ionic-liquid-assisted 
electrochemical synthesis of ionic-liquidfunctionalized graphene sheets directly 
from graphite, J. Adv. Funct. Mater. 18 (10) (2008) 1518–1525, https://doi.org/ 
10.1002/adfm. 200700797. 

[46] N. Behabtu, J.R. Lomeda, M.J. Green, A.L. Higginbotham, A. Sinitskii, D. 
V. Kosynkin, D. Tsentalovich, A.N.G. Parra-Vasquez, J. Schmidt, E. Kesselman, 
Y. Cohen, Y. Talmon, J.M. Tour, M. Pasquali, Spontaneous high-concentration 
dispersions and liquid crystals of grapheme, Nat. Nanotechnol. 5 (2010) 406–411, 
https://doi.org/10.1038/nnano.2010.86. 

[47] A. Ambrosi, C.K. Chua, B. Khezri, Z. Sofer, R.D. Webster, M. Pumera, Chemically 
reduced graphene contains inherent metallic impurities present in parent natural 
and synthetic graphite, Proc. Natl. Acad. Sci. 109 (32) (2012) 12899–12904, 
https://doi.org/10.1073/pnas.1205388109. 

[48] Akanksha. Akanksha, A Bottom-Up Approach To Graphene Synthesis, AZoNano 
(2022). Retrieved on March 232023 from, https://www.azonano.com/article. 
aspx?ArticleID=6094. 

[49] J. Pijeat, J.S. Lauret, S &Campidelli, Bottom-up approach for the synthesis of 
graphene nanoribbons. Graphene Nanoribbons, IOP Publishing, 2019. 

[50] Mamta Devi, Sachin Rawat, Swati Sharma, A comprehensive review of the 
pyrolysis process: from carbon nanomaterial synthesis to waste treatment, Oxford 
Open Mater. Sci. 1 (1) (2021), https://doi.org/10.1093/oxfmat/itab014 itab014. 

[51] K.S. Subrahmanyam, S.R.C. Vivekchand, A. Govindaraj,and C.N.R. Rao, “A study 
of graphenes prepared by different methods: characterization, properties and 
solubilization,”J. Mater. Chem., vol. 18, no. 13, pp. 1517–1523. doi:10.1039/B71 
6536F. 

[52] Z.S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, H. 
M. Cheng, Synthesis of graphene sheets with high electrical conductivity and 
good thermal stability by hydrogen arc discharge exfoliation, ACS Nano 3 (2009) 
411, https://doi.org/10.1021/nn900020u. 

[53] L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Boron- and nitrogen-doped carbon 
nanotubes and graphene, InorgChim. Acta 363 (2009) 4163, https://doi.org/ 
10.1016/j.ica.2010.07.057. 

[54] C.N.R. Rao, K.S. Subrahmanyam, H.S.S. Ramakrishna Matte, B. Abdulhakeem, 
A. Govindaraj, B. Das, P. Kumar, A. Ghosh, D.J. Late, A study of the synthetic 
methods and properties of graphenes, Sci. Technol. Adv. Mater. 11 (2010), 
054502, https://doi.org/10.1088/1468-6996/11/5/054502. 

[55] T. Yusaf, A.S.F. Mahamude, K. Farhana, W.S.W. Harun, K. Kadirgama, 
D. Ramasamy, M.K. Kamarulzaman, S. Subramonian, S. Hall, H.A. Dhahad, 
A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, 
and Applications, Sustainability 14 (2022) 12336, https://doi.org/10.3390/ 
su141912336. 

[56] B. Vestince, Euphrem Mbayachi, N. dayiragije, Sammani Thirasara, Taj Sunaina, 
R. Elice, Mbuta Attaullah khan, Graphene synthesis, characterization and its 
applications: A review, Result Chem. (2021), https://doi.org/10.1016/j. 
rechem.2021.100163. 

[57] Perry T. Yin, Shreyas Shah, Manish Chhowalla, Ki-Bum Lee, Design, Synthesis, 
and Characterization of Graphene–Nanoparticle Hybrid Materials for 
Bioapplications, Chem. Rev. 115 (7) (2015) 2483–2531, https://doi.org/ 
10.1021/cr500537t. 

[58] Leifeng Chen, Hu Yu, Jiasong Zhong, Lihui Song, Jun Wu, Weitao Su, Graphene 
field emitters: A review of fabrication, characterization and properties, Mater. Sci. 
Eng. B 220 (2017) 44–58, https://doi.org/10.1016/j.mseb.2017.03.007. 

[59] P.R.G.D.J. Graves, D. Gardiner, Practical Raman Spectroscopy, 10, Springer, 
1989, p. 978. -3. 

[60] M. Orecchioni, R. Cabizza, A. Bianco, L.G.J. Delogu, Graphene as cancer 
theranostic tool: Progress and future challenges, Theranostics 5 (2015) 710. 

[61] ... & Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, A.T Shen Wee, 
Raman studies of monolayer graphene: the substrate effect, J. Phys. Chem. C 112 
(29) (2008) 10637–10640. 

[62] ... & H.B. Zhang, W.G. Zheng, Q. Yan, Y. Yang, J.W. Wang, Z.H. Lu, Z.Z. Yu, 
Electrically conductive polyethylene terephthalate/graphene nanocomposites 
prepared by melt compounding, Polymer 51 (5) (2010) 1191–1196. 

[63] S. Perumbilavil, P. Sankar, T.P. Rose, R. Philip, White light Z-scan measurements 
of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 
400–700 nm region, Appl. Phys. Lett. 107 (5) (2015), https://doi.org/10.1063/ 
1.4928124. 

[64] Y. Seekaew, et al., Low-cost and flexible printed graphene–PEDOT: PSS gas sensor 
for ammonia detection. 2014. 15(11): p. 2971–2981. 

[65] H.B. Zhang, W.G. Zheng, Q. Yan, Y. Yang, J.W. Wang, Z.H. Lu, Z.Z. Yu, 
Electrically conductive polyethylene terephthalate/graphene nanocomposites 
prepared by melt compounding, Polymer 51 (5) (2010) 1191–1196. 

[66] A. Ramadoss, S.J. Kim, Facile preparation and electrochemical characterization of 
graphene/ZnO nanocomposite for supercapacitor applications, Mater. Chem. 
Phys. 140 (1) (2013) 405–411. 

[67] I.S. Lyubutin, A.O. Baskakov, S.S. Starchikov, Kun-Yauh Shih, Chun-Rong Lin, 
Yaw-Teng Tseng, Shou-Shiun Yang, Zhen-Yuan Han, Yu.L. Ogarkova, V. 
I. Nikolaichik, A.S Avilov, Synthesis and characterization of graphene modified 
by iron oxide nanoparticles, Mater. Chem. Phys. 219 (2018) 411–420, https:// 
doi.org/10.1016/j.matchemphys.2018.08.042. 

[68] Y. Seekaew, S. Lokavee, D. Phokharatkul, A. Wisitsoraat, T. Kerdcharoen, 
C &Wongchoosuk, Low-cost and flexible printed graphene–PEDOT: PSS gas 
sensor for ammonia detection, Org. Electron. 15 (11) (2014) 2971–2981. 

M.H. Mobarak et al.                                                                                                                                                                                                                           

https://doi.org/10.1016/j.conbuildmat.2017.06.164
https://doi.org/10.1016/j.conbuildmat.2017.06.164
https://doi.org/10.1016/j.nano.2015.11.011
https://doi.org/10.1016/j.msec.2019.110154
https://doi.org/10.1016/j.msec.2019.110154
https://doi.org/10.1002/admi.201900229
https://doi.org/10.1002/admi.201900229
https://doi.org/10.1016/j.smaim.2021.08.001
https://doi.org/10.1021/acsnano.2c12488
https://doi.org/10.23812/21-2supp1-20
https://doi.org/10.23812/21-2supp1-20
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0024
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0024
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0024
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0024
https://doi.org/10.1080/21655979.2017.1373539
https://doi.org/10.1080/21655979.2017.1373539
https://doi.org/10.1002/jbm.a.35645
https://doi.org/10.1038/s41586-022-04615-2
https://doi.org/10.1038/s41586-022-04615-2
https://doi.org/10.1016/j.msec.2019.04.051
https://doi.org/10.1016/j.msec.2019.04.051
https://doi.org/10.3390/ijms222111390
https://doi.org/10.3390/ijms222111390
https://doi.org/10.1016/j.jot.2022.01.002
https://doi.org/10.1016/j.jot.2022.01.002
https://doi.org/10.3390/coatings13040725
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0033
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0033
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0034
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0034
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0035
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0035
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0035
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0036
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0036
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0037
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0037
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0037
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0038
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0038
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0039
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0039
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0039
https://doi.org/10.1088/1757-899X/263/3/032019
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0041
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0041
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0041
https://doi.org/10.3390/ma15217804
https://doi.org/10.1002/smll.200900242
https://doi.org/10.1002/anie.200902534
https://doi.org/10.1002/adfm. 200700797
https://doi.org/10.1002/adfm. 200700797
https://doi.org/10.1038/nnano.2010.86
https://doi.org/10.1073/pnas.1205388109
https://www.azonano.com/article.aspx?ArticleID=6094
https://www.azonano.com/article.aspx?ArticleID=6094
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0049
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0049
https://doi.org/10.1093/oxfmat/itab014
https://doi.org/10.1039/B716536F
https://doi.org/10.1039/B716536F
https://doi.org/10.1021/nn900020u
https://doi.org/10.1016/j.ica.2010.07.057
https://doi.org/10.1016/j.ica.2010.07.057
https://doi.org/10.1088/1468-6996/11/5/054502
https://doi.org/10.3390/su141912336
https://doi.org/10.3390/su141912336
https://doi.org/10.1016/j.rechem.2021.100163
https://doi.org/10.1016/j.rechem.2021.100163
https://doi.org/10.1021/cr500537t
https://doi.org/10.1021/cr500537t
https://doi.org/10.1016/j.mseb.2017.03.007
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0077
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0077
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0078
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0078
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0079
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0079
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0079
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0080
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0080
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0080
https://doi.org/10.1063/1.4928124
https://doi.org/10.1063/1.4928124
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0083
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0083
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0083
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0084
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0084
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0084
https://doi.org/10.1016/j.matchemphys.2018.08.042
https://doi.org/10.1016/j.matchemphys.2018.08.042
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0086
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0086
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0086


Applied Surface Science Advances 18 (2023) 100470

14
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[160] M. Özcan, C.Â.M. Volpato, L. Hian, B.D. Karahan, P.F. Cesar, Graphene for 
zirconia and titanium composites in dental implants: Significance and predictions, 
Curr. Oral Health Rep. 9 (3) (2022) 66–74, https://doi.org/10.1007/s40496-022- 
00310-3. 
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A. Ostrowska, B. Wójcik, M. Łojkowski, M. Gołębiewski, A. Chwalibog, 
S. Jaworski, Nanocomposites of Graphene Oxide—Silver nanoparticles for 
enhanced antibacterial activity: mechanism of action and medical textiles 
coating, Materials 15 (9) (2022) 3122, https://doi.org/10.3390/ma15093122. 
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[247] A. Apostu, I. Șufaru, O. Țănculescu, S. Stoleriu, A. Doloca, A.a.C. Pendefunda, S. 
M. Solomon, Can graphene pave the way to successful periodontal and dental 
prosthetic treatments? A narrative review, Biomedicines 11 (9) (2023) 2354, 
https://doi.org/10.3390/biomedicines11092354. 

[248] W. Zhang, J. Cui, C.A. Tao, Y. Wu, Z. Li, L. Ma, Y. Wen, G. Li, A Strategy for 
producing pure single-layer graphene sheets based on a confined self-assembly 
approach, Angew. Chem. Int. Ed. 48 (32) (2009) 5864–5868, https://doi.org/ 
10.1002/anie.200902365. 

[249] X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, 
I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of 
high-quality and uniform graphene films on copper foils, Science 324 (5932) 
(2009) 1312–1314, https://doi.org/10.1126/science.1171245. 

[250] X. Wang, H. You, F. Liu, M. Li, L. Wan, S. Li, Q. Li, Y. Xu, R. Tian, Z. Yu, D. Xiang, 
J. Cheng, Large-scale synthesis of few-layered graphene using CVD, J. Chem. 
Vapor Depos. 15 (1–3) (2009) 53–56, https://doi.org/10.1002/cvde.200806737. 

[251] Y. Wang, X. Chen, Y. Zhong, F. Zhu, K.P. Loh, Large area, continuous, few-layered 
graphene as anodes in organic photovoltaic devices, Appl. Phys. Lett. 95 (2009), 
063302, https://doi.org/10.1063/1.3204698. 

[252] E. Dervishi, Z. Li, F. Watanabe, A. Biswas, Y. Xu, R.B. Alexandru, V. Saini, S. 
B. Alexandru, Large-scale graphene production by RF-cCVD method, Chem. 
Commun. 27 (2009) 4061–4063, https://doi.org/10.1039/B906323D. 

[253] D. Chong-an, W. Dacheng, Y. Gui, L. Yunqi, G. Yunlong, Z. Daoben, Patterned 
graphene as source/drain electrodes for bottom-contact organic field-effect 
transistors, Adv. Mater. 20 (17) (2008) 3289–3293, https://doi.org/10.1002/ 
adma.200800150. 

[254] S.J. Chae, F. G€unes, K.K. Kim, E.S. Kim, G.H. Han, S.M. Kim, H.J. Shin, S. 
M. Yoon, J.Y. Choi, M.H. Park, C.W. Yang, D. Pribat, Y.H. Lee, Synthesis of large- 
area graphene layers on poly-nickel substrate by chemical vapor deposition: 
wrinkle formation, Adv. Mater. 21 (22) (2009) 2328–2333, https://doi.org/ 
10.1002/adma.200803016. 

[255] N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, S. Xu, Large scale synthesis of N-doped 
multi-layered graphene sheets by simple arc-discharge method, Carbon 48 (1) 
(2009) 255–259, https://doi.org/10.1016/j.carbon.2009.09.013. 

[256] S. Karmakar, N.V. Kulkarni, A.B. Nawale, N.P. Lalla, R. Mishra, V.G. Sathe, S. 
V. Bhoraskar, A.K. Das, A novel approach towards selective bulk synthesis of few- 
layer graphenes in an electric arc, J. Phys. D Appl. Phys. 42 (11) (2009), 115201, 
https://doi.org/10.1088/0022-3727/42/11/115201. 

[257] E. Rollings, G.H. Gweon, S.Y. Zhou, B.S. Mun, J.L. McChesney, B.S. Hussain, A. 
V. Fedorov, P.N. First, P.N. First, W.A. de Heer, A. Lanzar, Synthesis and 
characterization of atomically thin graphite films on a silicon carbide substrate, 
J. Phys. Chem. Solids 67 (9-10) (2006) 2172–2177, https://doi.org/10.1016/j. 
jpcs.2006.05.010. 

[258] D.W.A. Heer, C. Berger, X. Wu, P.N. First, E.H. Conrad, X. Li, T. Li, M. Sprinkle, 
J. Hass, M.L. Sadowski, M. Potemski, G. Martinez, Epitaxial graphene, Solid State 
Commun. 143 (1–2) (2007) 92–100, https://doi.org/10.1016/j.ssc.2007.04.023. 

[259] M. Alexander, P. Oleg, Density functional study of graphene overlayers on SiC, 
Phys. Status Solidi B 245 (7) (2008) 1425–1435, https://doi.org/10.1002/ 
pssb.200844031. 

[260] Z.H. Ni, W. Chen, X.F. Fan, J.L. Kuo, T. Yu, A.T.S. Wee, Z.X. Shen, Raman 
spectroscopy of epitaxial graphene on a SiC substrate, Phys. Rev. B Condens. 
Matter 77 (2008), 115416, https://doi.org/10.1103/PhysRevB.77.115416. 

[261] P.W. Sutter, J.I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium, Nat. Mater. 
7 (2008) 406–411, https://doi.org/10.1038/nmat2166. 

M.H. Mobarak et al.                                                                                                                                                                                                                           

https://doi.org/10.3390/polym12122978
https://doi.org/10.1177/0967391120969503
https://doi.org/10.1177/0967391120969503
https://doi.org/10.1177/0022034519894583
https://doi.org/10.1177/0022034519894583
https://doi.org/10.1177/2280800020966936
https://doi.org/10.4317/jced.53722
https://doi.org/10.3390/nano8050349
https://doi.org/10.3390/nano8050349
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0321
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0321
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0321
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0324
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0324
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0324
https://doi.org/10.1016/j.msec.2019.04.051
https://doi.org/10.1016/j.msec.2019.04.051
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0328
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0328
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0328
https://doi.org/10.1016/j.carbon.2016.03.010
https://doi.org/10.1039/c4nr04584j
https://doi.org/10.1039/c4nr04584j
https://doi.org/10.1016/j.bioactmat.2020.04.003
https://doi.org/10.1016/j.bioactmat.2020.04.003
https://doi.org/10.1039/c3tb20452a
https://doi.org/10.1039/c3tb20452a
https://doi.org/10.1039/c4tb00326h
https://doi.org/10.1039/c4tb00326h
https://doi.org/10.1002/ange.201206107
https://doi.org/10.1016/j.biomaterials.2013.06.045
https://doi.org/10.1515/ntrev-2022-0009
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0337
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0337
http://refhub.elsevier.com/S2666-5239(23)00104-6/sbref0337
https://doi.org/10.1002/adma.201203229
https://doi.org/10.1002/adma.201203229
https://doi.org/10.1088/2053-1583/2/3/032004
https://doi.org/10.1088/2053-1583/2/3/032004
https://doi.org/10.1016/j.biomaterials.2017.10.004
https://doi.org/10.1016/j.biomaterials.2017.10.004
https://doi.org/10.1016/j.rser.2020.110026
https://doi.org/10.1039/c7ra02910a
https://doi.org/10.1039/c7ra02910a
https://doi.org/10.1016/j.desal.2019.114174
https://doi.org/10.1016/j.desal.2019.114174
https://doi.org/10.1021/es504421y
https://doi.org/10.1007/s10853-021-05873-7
https://doi.org/10.1016/j.matpr.2021.09.346
https://doi.org/10.1016/j.matpr.2021.09.346
https://doi.org/10.3390/biomedicines11092354
https://doi.org/10.1002/anie.200902365
https://doi.org/10.1002/anie.200902365
https://doi.org/10.1126/science.1171245
https://doi.org/10.1002/cvde.200806737
https://doi.org/10.1063/1.3204698
https://doi.org/10.1039/B906323D
https://doi.org/10.1002/adma.200800150
https://doi.org/10.1002/adma.200800150
https://doi.org/10.1002/adma.200803016
https://doi.org/10.1002/adma.200803016
https://doi.org/10.1016/j.carbon.2009.09.013
https://doi.org/10.1088/0022-3727/42/11/115201
https://doi.org/10.1016/j.jpcs.2006.05.010
https://doi.org/10.1016/j.jpcs.2006.05.010
https://doi.org/10.1016/j.ssc.2007.04.023
https://doi.org/10.1002/pssb.200844031
https://doi.org/10.1002/pssb.200844031
https://doi.org/10.1103/PhysRevB.77.115416
https://doi.org/10.1038/nmat2166


Applied Surface Science Advances 18 (2023) 100470

18

[262] T. Seyller, A. Bostwick, K.V. Emtsev, K. Horn, L. Ley, J.L. McChesney, T. Ohta, J. 
D. Riley, E. Rotenberg, F. Speck, Epitaxial graphene: a new material, Phys. Status 
Solidi B 245 (7) (2008) 1436–1446, https://doi.org/10.1002/pssb.200844143. 

[263] M. Sprinkle, P. Soukiassian, W.A. de Heer, C. Berger, E.H. Conrad, Epitaxial 
graphene: the material for graphene electronics, Phys. Status Solidi RRL 3 (6) 
(2009) A91–A94, https://doi.org/10.1002/pssr.200903180. .doi. 

[264] D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B. 
K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene 
nanoribbons, Nature 458 (7240) (2009) 872–876, https://doi.org/10.1038/ 
nature07872. 

[265] N. Amiryaghoubi, N.N. Pesyan, M. Fathi, Y. Omidi, Injectable thermosensitive 
hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells 
scaffold for bone tissue engineering, Int. J. Biol. Macromol. 162 (2020) 
1338–1357, https://doi.org/10.1016/j.ijbiomac.2020.06.138. 

[266] S. Pathmanapan, P. Periyathambi, S.K. Anandasadagopan, Fibrin hydrogel 
incorporated with graphene oxide functionalized nanocomposite scaffolds for 
bone repair — In vitro and in vivo study, Nanomed. Nanotech. Biol. Med. 29 
(2020), 102251, https://doi.org/10.1016/j.nano.2020.102251. 

[267] J. Prakash, D. Prema, K. Venkataprasanna, K. Balagangadharan, 
N. Selvamurugan, G.D. Venkatasubbu, Nanocomposite chitosan film containing 
graphene oxide/hydroxyapatite/gold for bone tissue engineering, Int. J. Biol. 
Macromol. 154 (2020) 62–71, https://doi.org/10.1016/j.ijbiomac.2020.03.095. 

[268] V. Bordoni, G. Reina, M. Orecchioni, G. Furesi, S. Thiele, C. Gardin, B. Zavan, 
G. Cuniberti, A. Bianco, M. Rauner, L.G. Delogu, Stimulation of bone formation by 
monocyte-activator functionalized graphene oxide in vivo, Nanoscale 11 (41) 
(2019) 19408–19421, https://doi.org/10.1039/c9nr03975a. 

[269] S. Liu, C. Zhou, S. Mou, J. Li, M. Zhou, Y. Zeng, C. Luo, J. Sun, Z. Wang, W. Xu, 
Biocompatible graphene oxide–collagen composite aerogel for enhanced stiffness 
and in situ bone regeneration, Mater. Sci. Eng. C 105 (2019), 110137, https://doi. 
org/10.1016/j.msec.2019.110137. 

[270] K. Zhou, P. Yu, X. Shi, T. Ling, W. Zeng, A. Chen, J. Yang, Z. Zhou, Hierarchically 
Porous Hydroxyapatite Hybrid Scaffold Incorporated with Reduced Graphene 
Oxide for Rapid Bone Ingrowth and Repair, ACS Nano 13 (8) (2019) 9595–9606, 
https://doi.org/10.1021/acsnano.9b04723. 

[271] J. Wu, Z. Ao, L. Yang, D. Jiao, D. Zeng, X. Wang, L. Cao, X. Jiang, Enhanced bone 
regeneration of the silk fibroin electrospun scaffolds through the modification of 
the graphene oxide functionalized by BMP-2 peptide, Int. J. Nanomed. 14 (2019) 
733–751, https://doi.org/10.2147/ijn.s187664. 

[272] L. Han, H. Sun, P. Tang, P. Li, C. Xie, M. Wang, K. Wang, J. Weng, H. Tan, F. Ren, 
X. Li, Mussel-inspired graphene oxide nanosheet-enwrapped Ti scaffolds with 
drug-encapsulated gelatin microspheres for bone regeneration, Biomater. Sci. 6 
(3) (2018) 538–549, https://doi.org/10.1039/c7bm01060e. 

[273] K. Kawamoto, H. Miyaji, E. Nishida, S. Miyata, A. Kato, A. Tateyama, T. Furihata, 
K. Shitomi, T. Iwanaga, T. Sugaya, Characterization and evaluation of graphene 
oxide scaffold for periodontal wound healing of class II furcation defects in dog, 
Int. J. Nanomed. 13 (2018) 2365–2376, https://doi.org/10.2147/ijn.s163206. 

[274] J. im, Y.C. Shin, J. Lee, E. Bae, Y. Jeon, C. Jeong, M. Yun, S. Lee, D. Han, J. Huh, 
The effect of reduced graphene Oxide-Coated biphasic calcium phosphate bone 
graft material on osteogenesis, Int. J. Mol. Sci. 18 (8) (2017) 1725, https://doi. 
org/10.3390/ijms18081725. 

[275] P. De Marco, S. Zara, M. De Colli, M. Radunović, V. Lazović, V. Ettorre, A. Di 
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Graphene Oxide Improves the Biocompatibility of Collagen Membranes in an In 
Vitro Model of Human Primary Gingival Fibroblasts, Biomed. Mater. 12 (5) 
(2017), 055005, https://doi.org/10.1088/1748-605X/aa7907. 

[319] G. Ming, L. Lv, D. Feng, T. Niu, C. Tong, D. Xia, et al., Effects of thermal 
Treatment on the Adhesion Strength and OsteoinductiveActivity of Single-Layer 
Graphene Sheets on Titanium Substrates, Sci. Rep. 8 (1) (2018) 8141, https://doi. 
org/10.1038/s41598-018-26551-w. 

[320] G. Ming, L. Lv, D. Feng, T. Niu, C. Tong, D. Xia, et al., Effects of thermal 
Treatment on the Adhesion Strength and Osteoinductive Activity of Single-Layer 
Graphene Sheets on Titanium Substrates, Sci. Rep. 8 (1) (2018) 8141, https://doi. 
org/10.1038/s41598-018-26551-w [PMC free article] [PubMed]  [Google 
Scholar] [Ref list]. 

[321] J. Lu, J. Sun, D. Zou, J. Song, S. Yang, Graphene-Modified Titanium Surface 
Enhances Local Growth Factor Adsorption and Promotes Osteogenic 
Differentiation of Bone Marrow Stromal Cells, Front. Bioeng. Biotechnol. 8 
(2020), 621788, https://doi.org/10.3389/fbioe.2020.621788. 

[322] W. Qian, J. Qiu, J. Su, X. Liu, Minocycline Hydrochloride Loaded on Titanium by 
Graphene Oxide: An Excellent Antibacterial Platform with the Synergistic Effect 
of Contact-Killing and Release-Killing, Biomater. Sci. 6 (2) (2018) 304–313, 
https://doi.org/10.1039/c7bm00931c. 

[323] H. Xie, M. Chua, I. Islam, R. Bentini, T. Cao, J.C. Viana-Gomes, et al., CVD-grown 
Monolayer Graphene Induces Osteogenic but Not Odontoblastic Differentiation of 
Dental Pulp Stem Cells, Dent. Mater. 33 (1) (2017) e13–e21, https://doi.org/ 
10.1016/j.dental.2016.09.030 [PubMed]  [Google Scholar] [Ref list]. 

[324] Z. Fan, J. Wang, Z. Wang, H. Ran, Y. Li, L. Niu, et al., One-pot Synthesis of 
Graphene/hydroxyapatite Nanorod Composite for Tissue Engineering, Carbon 66 
(2014) 407–416, https://doi.org/10.1016/j.carbon.2013.09.016. 

[325] S. Jelena, T. Bosko, N. Nadja, V. Jasna, P. Radmila, G. Rados, et al., 
Differentiation of Stem Cells from Apical Papilla into Neural Lineage Using 
Graphene Dispersion and Single Walled Carbon Nanotubes, J. Biomed. Mater. 
Res. 106 (10) (2018) 2653–2661. 10.1002/jbm.a.36461. 

[326] H. Seonwoo, K.J. Jang, D. Lee, S. Park, M. Lee, S. Park, et al., Neurogenic 
Differentiation of Human Dental Pulp Stem Cells on Graphene-Polycaprolactone 
Hybrid Nanofibers, Nanomaterials 8 (7) (2018) 554, https://doi.org/10.3390/ 
nano8070554. 

[327] C. Bacali, I. Bâldea, M. Moldovan, R. Carpa, D. Olteanu, G.A. Filip, V. Năstase, 
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